Journal of Information and Communication Technology (JICT)

Volume 03. Issue 02 January (2026)

Real-Time URL-Based Phishing Detection
Using XGBoost and Browser Extension

Integration

K.U.T. Siriwardhana, A. Fathima Sharfana, and R.M. Nayanajith Rathnayaka

Abstract Phishing attacks continue to pose a significant cybersecurity threat by misleading users into disclosing sensitive
information through fraudulent websites. This study presents a machine learning—based approach for detecting phishing websites
using URL-based features. A dataset comprising phishing and legitimate URLs was collected from trusted sources, including
PhishTank, OpenPhish, and Cisco Umbrella's Top Sites. Following preprocessing, key discriminative features such as URL length,
HTTPS usage, special character frequency, and randomness indicators were extracted. Several classification algorithms, Random
Forest, Support Vector Machine, Logistic Regression, and XGBoost, were trained and evaluated. Experimental results indicate
that the XGBoost model achieved the highest accuracy of approximately 90%, demonstrating balanced detection performance with
low computational overhead. The trained model was deployed through a Flask-based API and integrated with a web browser
extension to enable real-time URL analysis and phishing alerts. The proposed system enables real-time phishing detection with an
average inference latency of approximately 300—500 ms by deploying a lightweight, URL-feature—based machine learning model
within a browser extension, without relying on blacklist databases or computationally heavy analysis.

Index Terms— Cybersecurity, Machine Learning, Phishing Detection, Real-time Detection, XGBoost

. INTRODUCTION

IN modern digital era, people use the internet every day.

However, numerous problems accompany this widespread
usage. One of the most significant threats is phishing attacks[1].
Attackers frequently create fake websites with user interfaces
that look almost real[2][3]stealing private sensitive information
such as passwords and bank account details. These attacks
affect normal users, companies, and even government sites. The
nature of phishing threats continues to evolve continuously[4]
making detection increasingly challenging.

Traditional phishing detection tools that rely on URL
blacklists and basic rule-based filters are unable to identify
newly created and zero-day phishing sites[5][6]. These
conventional safety methods only work when a site is already
marked as malicious. Attackers, however, are fast at creating
new URLs, altering domain patterns, and employing evasion
methods that existing systems cannot match. When hackers
create a new phishing site, it often slips through traditional

K.U.T. Siriwardhana is a graduate from the Department of ICT, South
Eastern University of Sri Lanka, Sri Lanka.

A. Fathima Sharfana is a Lecturer (Prob) at the Department of ICT, South
Eastern University of Sri Lanka, Sri Lanka. (Email: sharfana.atham@seu.ac.1k)

R.M. Nayanajith Rathnayaka is a demonstrator at the Department of ICT,
South Eastern University of Sri Lanka, Sri Lanka. (Email:
nayanajith@seu.ac.1k)

defenses. Most available solutions rely on third-party phishing
databases to recognize threats[7], leaving users vulnerable when a
phishing site is novel or not yet listed in such databases.
Furthermore, current research does not focus sufficiently on real-
time URL-feature-based detection with browser extensions and
high accuracy. The majority of existing literature implements
machine learning models in an offline mode and fails to include
lightweight and instant URL analysis integrated into the browsing
process.

To address these limitations, a proactive detection system is
needed that learns from URL patterns, domain names, and other
subtle signals that normal users cannot see. Such a system can
determine whether a link is safe or not, even if it is new and
previously unseen. This research presents a browser extension that
runs while people use the internet, monitoring the websites users
visit and checking them with a trained machine learning model on
the server. When a user opens any website, the extension reads the
website URL and sends URL features to the backend, where a
trained machine learning model checks the link and studies its
patterns. The model examines URL features and compares the link
with what it learned from thousands of real and phishing URLs. If
it finds something strange or risky, it marks that website as
phishing and the extension delivers a quick warning message to the
user. Users do not need to do anything manually, as everything
works in the background automatically, providing seamless, real-
time protection against evolving phishing threats.

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992

55

mailto:sharfana.atham@seu.ac.lk
mailto:nayanajith@seu.ac.lk

Journal of Information and Communication Technology (JICT)
IL.LITERATURE REVIEW

A. Phishing Attacks and Detection Techniques

Phishing attacks represent one of the most dynamic and
pervasive cybersecurity threats, continuously evolving to
exploit vulnerabilities in user behavior and system security.
Recent surveys indicate that attackers persistently refine their
deceptive techniques, rendering conventional security measures
increasingly inadequate in providing comprehensive
protection[5][4].

Phishing attacks manifest through multiple vectors, each
exploiting different aspects of digital communication and web
browsing. URL-based phishing remains the most prevalent
approach, where attackers craft malicious links that redirect
users to fraudulent websites designed to mimic legitimate
services[8][9]. These attacks have become increasingly
sophisticated, employing homograph attacks, subdomain
manipulation, and URL shortening services to disguise
malicious intent[2]. Email phishing leverages social
engineering principles to manipulate recipients into divulging
credentials or executing harmful actions. Spoofed websites
represent particularly dangerous threats, replicating the visual
appearance and functionality of legitimate platforms with
remarkable precision[10]. Browser-based phishing attacks
exploit vulnerabilities within web browsers themselves,
utilizing techniques such as tab-nabbing, clickjacking, and
cross-site scripting to compromise user security without
requiring navigation away from legitimate domains.

The cybersecurity community has developed several
traditional methodologies to combat phishing threats. Blacklist-
based detection maintains databases of known malicious URLs
and domains, comparing accessed websites against these
repositories to identify threats[5]. Organizations like Google
Safe Browsing and PhishTank continuously update these
databases, providing protection against previously identified
threats. However, this reactive approach inherently suffers from
temporal vulnerabilities. Heuristic-based methods attempt to
overcome these limitations by analyzing website characteristics
and behavioral patterns[11]. These approaches examine factors
such as domain age, SSL certificate validity, presence of
sensitive input forms, and similarity to known legitimate sites.
Rule-based systems employ predefined criteria and decision
trees to classify websites, considering elements like URL
structure, HTML content patterns, and domain registration
information[12].

Despite widespread adoption, traditional phishing detection
techniques face significant limitations that compromise their
effectiveness. The most critical weakness of blacklist-based
approaches is the inevitable delay between phishing site
deployment and blacklist updates. Conventional blacklist and
rule-based systems struggle to keep pace with rapidly evolving
attacker tactics[5][4]. Research indicates that phishing websites
have an average lifespan of only 15-20 hours, yet blacklist
propagation can take several hours or even days, creating
substantial vulnerability windows during which users remain
unprotected[6]. This temporal gap allows attackers to achieve
their objectives before detection systems can respond.

Volume 03. Issue 02 January (2026)

High false positive rates present another significant challenge,
particularly for heuristic and rule-based systems[1]. Overly
aggressive detection parameters can flag legitimate websites as
suspicious, leading to user frustration and security alert fatigue,
where users begin ignoring warnings altogether. Conversely,
conservative parameters may miss sophisticated phishing attempts
that carefully crafted appearance to evade detection rules. The lack
of real-time protection capabilities represents perhaps the most
fundamental limitation. As phishing techniques evolve rapidly,
incorporating artificial intelligence, dynamic content generation,
and personalized social engineering, static rule-based systems
struggle to adapt[13].

Recognizing these limitations, there has been a firm trend of
shifting from static signature-based methods toward data-driven
machine learning and deep learning models for detecting malicious
URLs[5][13]. This transition reflects the cybersecurity
community's acknowledgment that adaptive, intelligent systems
are necessary to combat the dynamic nature of modern phishing
threats. Traditional methods typically cannot analyze contextual
website behavior, user interaction patterns, or real-time content
modifications that characterize contemporary phishing attacks[14].
Furthermore, these approaches often operate independently of user
browsing context, failing to consider factors such as typical
browsing habits, previously visited sites, or the legitimacy of
pathways leading to potentially malicious sites. The emergence of
zero-day phishing attacks, which exploit previously unknown
vulnerabilities or employ entirely novel deception techniques,
further exposes the inadequacy of retrospective detection methods
relying on historical data and predefined patterns[10]. This
evolution toward intelligent, adaptive detection mechanisms forms
the foundation for modern browser-based security solutions
capable of providing real-time protection against increasingly
sophisticated threats.

B. Machine Learning-Based Real-Time Phishing Detection in
Browser Extensions

The integration of machine learning algorithms into browser-
based phishing detection represents a paradigm shift from reactive
security measures to proactive, intelligent threat identification.
This data-driven approach leverages computational intelligence to
analyze website characteristics in real-time, addressing the critical
limitations inherent in traditional detection
methodologies[15][16].

Early phishing detection research primarily employed lexical
and domain features with classical machine learning algorithms
including Support Vector Machines (SVM), Decision Trees, k-
Nearest Neighbors (KNN), and Random Forests[1][9]. These
foundational studies demonstrated that even basic URL attributes
such as length, count of special characters, token composition, and
protocol signature (HTTP/HTTPS) could achieve over 90 percent
precision with appropriate classifiers[9][17].

Comparative analyses across diverse machine learning
algorithms have revealed important performance distinctions.
Abad & Gholamy[1] compared SVM, Decision Tree, Random
Forest, and KNN on mixed malicious URL datasets, finding that
SVM provided the highest accuracy with careful parameter tuning.
However, subsequent research indicates that ensemble models like
Random Forest and Gradient Boosting often outperform simple
linear models when evaluated on public datasets from PhishTank,

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992

56

Journal of Information and Communication Technology (JICT)

Kaggle, and similar sources[18][17]. These findings confirm
that nonlinear ensembles better capture complex URL feature
patterns compared to simple classifiers[19].

Recent developments emphasize ensemble learning and
strategic feature selection as critical design choices in phishing
URL detection systems. Wajid et al.[7] introduced an ensemble
voting classifier with hybrid ensemble feature selection (HEFS)
evaluated on DS-30 and DS-50 datasets, achieving accuracy
between 96-98 percent using only approximately one-fifth of
the original features. This demonstrates that intelligent feature
selection not only improves computational efficiency but can
also enhance model performance by reducing noise and
overfitting[20]. Similarly, research comparing non-ensemble
models versus ensemble classifiers across balanced phishing
datasets examined Random Forest, Bagging, Stacking,
AdaBoost, and Gradient Boost architectures[6]. These studies
consistently show that ensemble approaches provide superior
robustness and generalization capabilities compared to
individual classifiers[19][21].

Subsequent research has built upon foundational approaches
by incorporating larger datasets and additional engineered
features, including domain age, number of subdomains, scale
tokens, and entropy-based indicators[18][22]. The
effectiveness of machine learning models fundamentally
depends on the quality and relevance of extracted features.
URL-based features constitute the primary category,
encompassing characteristics such as URL length, presence of
special characters, domain structure, and protocol usage[17].
Domain-related features provide crucial contextual
information, including WHOIS registration details, DNS record
analysis, domain reputation scores, and geographic location of
hosting servers[8][22]. Webpage content features offer rich
discriminative information by analyzing HTML structure,
JavaScript behavior, external resource links, presence of login
forms, and visual similarity to known legitimate sites[12][10].
Behavioral features, including page redirect patterns, popup
behavior, and form submission destinations, provide additional
classification dimensions[12].

Implementing machine learning models within browser
extensions presents unique technical challenges demanding
careful architectural consideration. Latency represents the most
critical constraint, as users expect instantaneous page loading
without perceptible delays introduced by security scanning[23].
Research indicates that detection latency exceeding 200-300
milliseconds significantly degrades user experience, creating
pressure to optimize model inference speed without sacrificing
accuracy. Browser extensions operate within strict resource
limitations, including memory constraints, CPU allocation
restrictions, and sandboxed execution environments[7]. These
constraints necessitate lightweight model architectures and
efficient feature extraction pipelines. The balance between
security and usability requires sophisticated user interface
design, presenting warnings that are informative yet non-
intrusive[23]. Continuous model updating poses additional
challenges, as phishing techniques evolve rapidly and models
must adapt without requiring frequent extension updates that
burden wusers[14]. Edge-based inference offers privacy
advantages and reduces dependency on external services but

Volume 03. Issue 02 January (2026)

amplifies resource constraints, while cloud-based approaches
enable more sophisticated models but introduce latency and
privacy concerns[24][22].

As summarized in Table I, recent phishing detection studies
increasingly emphasize high classification accuracy through
ensemble learning and deep learning architectures. Many of these
approaches report accuracy levels between 96-99% in offline
evaluations by leveraging computationally intensive feature sets,
including HTML content, image analysis, word embeddings, and
external services such as DNS or WHOIS queries. However, these
design choices introduce significant inference latency, large model
sizes, and dependencies on network-based lookups, which limit
their suitability for real-time browser-based deployment.
Moreover, several high-accuracy studies focus primarily on offline
benchmarking and do not provide functional browser
implementations or detailed latency analysis. This highlights a
broader trend in the literature toward accuracy-driven evaluation,
while practical deployment constraints such as latency, model size,
and real-time usability remain comparatively underexplored.

Festne b Modal Training

+

Vs
Data Caaning ind
Preprocesssng

WModel Seection

M

=
A
=0 i

Real-Time
Detection

B

Deveicpment

o
[—

Fig. 1: Followed Methodology

III.METHODOLOGY

This section presents the comprehensive methodology employed
to develop a real-time phishing detection system integrated with a
browser extension. The proposed approach encompasses data
collection, feature engineering, model development,
hyperparameter optimization, and deployment through a Flask-
based API. Figure 1 illustrates the complete workflow of the
system architecture.

A. Data Collection and Preprocessing Image Files

The dataset construction process involved aggregating URLs
from multiple trusted public sources to ensure balanced
representation of both malicious and legitimate websites. Phishing
URLs were primarily sourced from PhishTank and OpenPhish
repositories, while legitimate URLs were obtained from Cisco
Umbrella Top Sites and DomCop databases. The compiled dataset
comprised 13,716 URLs, maintaining an equal distribution with
6,858 phishing URLs and 6,858 legitimate URLs to prevent class
imbalance bias during model training.

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992

57

Journal of Information and Communication Technology (JICT)

TABLE I

Volume 03. Issue 02 January (2026)

SUMMARY OF PHISHING DETECTION STUDIES AND RESEARCH GAPS

Study Approach Category Techniques / Models Used Dataset Size / Type Feature Scope

[9] Machine Learning URL-based ML 6,000 URLs Lexical

[7] Machine Learning Ensemble (HEFS, RF) DS-30, DS-50 URL + Feature engineering

[13] Machine Learning LR, SVM, RF, GB UCI dataset Feature-based

[20] Machine Learning Random Forest Mendeley dataset URL + Domain

[6] Machine Learning Ensemble ML Two datasets URL + DNS + HTML

[18] Machine Learning GBoost, RF, DT Feature-based (30 features) URL + Statistical

[19] Machine Learning LR, RF, SVM, Ensembles Mixed dataset Multi-feature

[21] Machine Learning SVM Custom dataset Feature-heavy

[14] Deep Learning CNN-LSTM, RF 11,430 URLs URL + Embeddings

[22] Deep Learning / Word2Vec, GloVe, XGB, CNN, LSTM Mixed datasets Text embeddings
Hybrid

[23] Deep Learning KD-ELECTRA (Chrome extension) 450k URLs Transformer embeddings

[24] Hybrid ML-DL UPADM framework Large dataset Multi-modal

[25] Hybrid Machine LR, SVC, DT, RF, GBM, KNN + proposed ~11,000 phishing & URL-based + handcrafted
Learning LSD (LR+SVC+DT voting) legitimate URLs (UClI-style) features

[26] Deep Learning CNN + LSTM (IPDS) ~IM URLs + >10k webpage URL + HTML text +
(Hybrid) images images + frames

[27] Deep Learning RF, J48, FilteredClassifier, 24 ML models Two datasets (11,055 Feature-based (30 & 9

instances; 1,353 instances) engineered features)

[28] Deep Learning CNN, LSTM, RNN, Attention-based DL ~ Multiple datasets (review Text, email structure,
(Survey) paper) embeddings

[29] Large Language @ LLaMA (character-level URL modeling) >2 million URLs URL character sequences
Model (LLM) (embedding-based)

ML = Machine Learning, DL = Deep Learning, ML-DL = Hybrid Machine Learning and Deep Learning, LR = Logistic Regression,
SVM = Support Vector Machine, RF = Random Forest, DT = Decision Tree, GB = Gradient Boosting, XGB = Extreme Gradient
Boosting, CNN = Convolutional Neural Network, LSTM = Long Short-Term Memory, NN = Neural Network, SEM = Structural
Equation Modeling, HEFS = Hybrid Ensemble Feature Selection, KD-ELECTRA = Knowledge Distillation—based ELECTRA Model,
UPADM = Unified Phishing Attack Detection Model, URL = Uniform Resource Locator, F1 = F1-score.

The preprocessing pipeline consisted of several critical steps
to ensure data quality and consistency. Initially, duplicate
entries were identified and removed using hash-based
deduplication techniques. Subsequently, broken links and URLs
with missing components were filtered out through accessibility
validation. Character normalization was applied to standardize

the URL format, removing unnecessary whitespace and special
characters that could introduce noise in feature extraction. Each
URL was assigned a binary label, where 1 denotes phishing and
0 represents legitimate URLs. The preprocessed dataset
structure is depicted in Figure 2.

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka
ISSN: 2961-5992 58

Journal of Information and Communication Technology (JICT)

B final phishing urls listcsv X

NULPS.//S5ariloridprancipemonidicinu. com
https://yaraasescont.com
https://drishtinanda.com
https://impotgouv-amendes.com
https://cosmoswater.in
https://serviciosmi.com
https://aara-tech.com
https://wps-dev.com
http://wps-dev.com
http://170.239.85.24
https://acbcba.com.bo
https://otech-bd.com
https://sniply.app
https://mibanco-online.es
http://napa.hn
https://rndinnovative.com.np

Fig. 2: Dataset after preprocessing

B. Feature Engineering

Feature extraction constitutes a crucial phase in transforming
raw URL strings into quantifiable attributes suitable for
machine learning algorithms. The feature engineering process
encompassed four distinct categories, each capturing different
behavioral characteristics of URLSs.

» Lexical Features: This category extracts structural
properties including URL length, count of digits, number of
hyphens, presence of special characters, and token distribution.
These features effectively capture obfuscation techniques
commonly employed in phishing attacks.

* Character Ratio Features: Statistical measures such as
vowel-to-character ratio, consonant-to-character ratio, digit-to-
character ratio, and entropy-based randomness metrics were
computed. These ratios help identify randomly generated
domains and unusual character distributions characteristic of
malicious URLs.

* Domain and Security Features: Security-related attributes
including HTTPS protocol usage, top-level domain (TLD)
classification, presence of IP-based domains, and suspicious
domain patterns were extracted. These features leverage domain
registration and security certificate information to assess URL
legitimacy.

* Keyword and Brand Features: Semantic analysis was
performed to detect phishing-indicative keywords such as
"login," "verify," "update," and "secure." Additionally, brand
imitation detection and brand similarity scoring algorithms were
implemented to identify spoofing attempts targeting well-
known organizations.

C. Model Selection and Training

1) Algorithm Evaluation

Twelve machine learning algorithms were evaluated to
identify the optimal classifier for phishing detection. The
evaluated models included Logistic Regression, Decision Tree,
Random Forest, Gradient Boosting, Naive Bayes, K-Nearest

Volume 03. Issue 02 January (2026)

Neighbors (KNN), Support Vector Machine (SVM), and
XGBoost, among others. All models were trained and evaluated
under identical conditions to ensure fair comparison.
2) Data Partitioning

The dataset was partitioned using an 80-20 train-test split
ratio. This ratio was selected to allocate sufficient training
samples for model learning while retaining an adequate test set
for unbiased performance evaluation. The stratified splitting
technique ensured that both subsets maintained the original 50-
50 distribution of phishing and legitimate URLs.
3) Baseline Training Protocol

The training protocol involved loading the engineered feature
matrix (X) and corresponding label vector (y), followed by
systematic training of each model on the training subset.
Predictions were generated on the test subset, and
comprehensive performance metrics were computed including
Accuracy, Precision, Recall, F1-score, ROC-AUC, Log Loss,
and Matthews Correlation Coefficient (MCC). Algorithm-
specific parameters were configured as follows: maximum
iterations set to 1000 for Logistic Regression convergence,
probability estimation enabled for SVM to support probabilistic
predictions, and log loss specified as the evaluation metric for
XGBoost to suppress convergence warnings.

D.Hyperparameter Optimization

Following preliminary evaluation, XGBoost demonstrated
superior performance and was selected for extensive
hyperparameter tuning. The optimization process aimed to
enhance predictive performance and generalization capability
through systematic parameter space exploration.

1) Optimization Strategy

RandomizedSearchCV ~ was employed for efficient
hyperparameter search, executing 100 iterations with 5-fold
cross-validation. The optimization process was conducted on
Google Colab infrastructure to leverage computational
resources. The dataset partitioning was modified to a 70-15-15
split for training, validation, and testing respectively, providing
stable results while maintaining statistical representativeness in
both validation and test sets.

2) Parameter Space

The hyperparameter search space encompassed the following
ranges:

* n_estimators: [200, 1500] - controlling ensemble size

» max_depth: [3, 12] - limiting tree complexity

 learning_rate: [0.001, 0.3] - adjusting gradient descent step

size

» subsample: [0.6, 1.0] - fraction of samples per tree

* colsample_bytree: [0.6, 1.0] - fraction of features per tree

* min_child weight: [1, 10] - minimum sum of instance

weight in child

e gamma: [0.0001, 1.0] - minimum loss reduction for

splitting

* reg_alpha: [0.000001, 0.1] - L1 regularization term

* reg lambda: [0.001, 1.0] - L2 regularization term

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992

59

Journal of Information and Communication Technology (JICT)

Volume 03. Issue 02 January (2026)

Hyperparameters vs CV Accuracy

. 3 . .
w > . - * -
0.900 2 " . o) 0 0.900 0§t g8 09001 ¥
55 . . 3 . P *
’ 3 2 . “ a

0.895 0.895 * s 08951 ¥
> > >
3 z f
€ 0.890 £ 0.890 © 08904 *
5 5 5
2 2 2
< < <
3 0885 3 0.885 : 3 0885 &

0.880 0.880 0.880

0.875 0.875 0.875

200 400 600 800 1000 1200 1400 3 a 5 6 7 8 9 10 1 000 005 010 015 020 025 030
n_estimators max_depth learning_rate
. - ; » 5 3 H L
0.900 ®4 S R ¢ y 0.900 0.900 ! H e
. ® . 3 o

0.895 0.895 LXTLE B ? e
> > >
3 g 9
£ 0.890 1 £ 0.890 1 € 0.890
5 H 5
g 2 g
g g g
< < <
G 0.885 G 0.885 1 3 0.885

0.880 0.880 0.880

0.875 0.875 0.875

060 065 070 075 080 085 090 095 100
subsample

060 065 070

Fig. 3: Hyperparameters vs mean_test_score (accuracy)

3) Optimal Configuration

The optimization process converged to the following optimal
hyperparameter configuration: n_estimators = 1479, max_depth
= 9, learning rate = 0.0057, colsample bytree = 0.99,
min_child weight =1, and gamma = 0.0002. This configuration
achieved a mean 5-fold cross-validation accuracy of 0.90199,
demonstrating consistent performance across all folds. The
relationship between hyperparameter combinations and test
accuracy is visualized in Figure 3.
4) Threshold Optimization
Classification threshold analysis was conducted across the
range [0.05, 0.95] to identify the optimal decision boundary.
Various performance metrics were evaluated at each threshold
point, as illustrated in Figure 4, enabling selection of a threshold
that balances precision and recall according to application
requirements.

Metric vs Threshold (Test)

1.00

0.95

0.90

0.85 4

Score

0.80

—e— accuracy
-8~ precision
—o— recall

® - fl

0.65

0.2 0.4 0.6 0.8
Probability Threshold

Fig. 4: Metric vs Threshold chart

075 080 085 09 095
colsample_bytree

1.00 1 2 3 4 S 6 7 8 9
min_child_weight

E. Feature Importance Analysis

XGBoost's intrinsic feature importance metrics provided
insights into feature contributions to the model's decision-
making process. Three important measures were analyzed:

* Weight-based Importance: Features such as
entropy domain, brand similarity, = vowel ratio, = and
consonant ratio exhibited the highest weights, indicating
frequent usage in tree construction (Figure 6).

* Cover-based Importance: The analysis revealed that
has_hyphen,num_hyphens, and contains_phishing_words
demonstrated maximum coverage values, suggesting their
significant role in sample classification.

* Gain-based Importance: Features has hyphen and
num_hyphens achieved the highest gain scores, indicating their
substantial contribution to prediction accuracy improvements.

The convergence of these importance metrics confirms that
structural anomalies (hyphens), domain randomness (entropy),
and brand imitation attempts constitute the most discriminative
features for phishing detection.

F. Model Evaluation and Comparison

Comprehensive performance evaluation was conducted on all
twelve machine learning algorithms using identical feature sets
and data splits. Each model generated both categorical
predictions and probability estimates for the positive class
where applicable. The evaluation metrics encompassed
Accuracy, Precision, Recall, Fl1-score, ROC-AUC, and Log
Loss.

G.System Deployment and Integration

The deployment architecture comprises a Flask-based REST
API backend and a Google Chrome browser extension frontend,
enabling real-time phishing detection during web browsing.

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992

60

Journal of Information and Communication Technology (JICT)

1) Backend API Development

The Flask framework was selected for API development due
to its lightweight architecture and rapid deployment capabilities.
The API loads the trained model upon initialization and exposes
an endpoint for URL feature evaluation. Upon receiving a
feature vector from the browser extension, the API performs
real-time inference and returns a classification result with
associated confidence scores.

2) Browser Extension Integration

The Chrome extension operates as a background service that
monitors navigation events. When a user initiates navigation to
a new URL, the extension extracts the predefined feature set
from the URL string and transmits it to the Flask API via an
asynchronous HTTP POST request. The extension processes
the API response and, in cases where the URL is classified as
phishing with high confidence, displays an immediate warning
alert to prevent page loading. This architecture ensures
continuous, transparent protection without requiring explicit
user interaction, effectively functioning as an autonomous
security layer during web browsing sessions.

3) Real-time Processing Pipeline

The complete processing pipeline operates within
milliseconds, ensuring minimal latency impact on browsing
experience. Feature extraction occurs client-side within the
extension, while model inference is performed server-side on
the Flask API. This distributed architecture balances
computational efficiency with model sophistication, enabling
deployment of complex machine learning models without
compromising browser performance.

Model Accuracy Precision Recall F1 Score ROC AUC Log Loss McC
Random Forest 0905612 0922786 0.885901 0.903967 0957064 0.417572 0.811897
Logistic Regression 0.887755 0921136 0.848837 0883510 0944585 0291750 0.777973
Decision Tree 0.892128 0919907 0.859738 0.888805 0.898900 2893162 0.785988
KNN 0896137 0922541 0865552 0893138 0942237 1200202 0.793834
XGBoost 0908528 0933693 0.880087 0906098 0961717 0239605 0.818442
Naive Bayes 0.845117 0.940686 0.737645 0826884 0928356 2394767 0.707173

SVM 0857872 0918506 0.786337 0.847298 0924796 0.347074 0.723427

Gradient Boosting 0.901239

0925983 0872820 0.898616 0958239 0258026 0.803843
AdaBoost 0873178 0900312 0840116 0869173 0938894 0550520 0.748086
Bagging 0892857 0907380 0875727 0891272 0948711 0802794 0.786216
Ridge Classifier 0885933 0930364 0.835029 0.880123 0.500000 18.074368 0.776039

SGD Classifier 0.839650 0.798469 0.9509884 0.850543 0500000 18.074368 0.685922

Fig. 5: Model testing result table

IV.RESULTS AND DISCUSSION

This section presents the experimental results obtained from
evaluating twelve machine learning algorithms for phishing
URL detection, followed by an analysis of the deployed browser
extension's real-time performance. The comprehensive
evaluation encompasses classification accuracy, computational
efficiency, and practical deployment validation.

Volume 03. Issue 02 January (2026)

XGBoost Importance (weight)

entropy_domain
brand_similarity
vowel_ratio

uri_length

consonant_ratio -
Iengest_token_length
domain_length
max_repeated_char_run
avg_token_length
td_suspicious
num_digits
num_special_chars
has_hitps

digit_ratio
num_hyphens
contains_phishing_words
contains_brand_token
num_tokens

has_hyphen

o 2500 S000 7500 10000 12500 15000 17500 20000
Importance

Fig. 6: XGBoost Importance (weight)

A. Model Performance Evaluation

Twelve classification algorithms were evaluated under
identical experimental conditions to ensure fair comparison.
The evaluated models include Random Forest, Logistic
Regression, Decision Tree, K-Nearest Neighbors (KNN),
XGBoost, Naive Bayes, Support Vector Machine (SVM),
Gradient Boosting, AdaBoost, Bagging Classifier, Ridge
Classifier, and Stochastic Gradient Descent (SGD) Classifier.
Each model was trained on the engineered feature set and
evaluated using standard classification metrics.

1) XGBoost: Selected Model

Based on comprehensive performance analysis, XGBoost was
selected as the optimal classifier for deployment. The model
achieved an accuracy of 90.85%, demonstrating robust
classification capability across both phishing and legitimate
URL classes. The precision score of 93.36% indicates high
reliability in positive predictions, minimizing false alarms that
could negatively impact user experience. The F1-score of 0.90
reflects balanced performance between precision and recall,
which is critical for phishing detection systems where both false
positives and false negatives carry significant consequences

While Random Forest exhibited competitive performance
with metrics closely approaching XGBoost, the latter
demonstrated superior balance between precision and recall
among the evaluated classifiers, making it more suitable for
real-time deployment scenarios. Although higher accuracy
values have been reported in the literature, many such
approaches employ computationally intensive models or offline
evaluation settings; in contrast, this work prioritizes low-
latency, lightweight deployment suitable for browser
extensions.

2) Comprehensive Performance Metrics

Table II presents the detailed performance metrics for the
selected XGBoost model across seven key evaluation criteria.
The model achieved an accuracy of approximately 90%,
indicating correct classification in nine out of ten URLs. The
precision of 93% demonstrates that when the system flags a
URL as phishing, it is correct 93% of the time, thereby

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992

61

Journal of Information and Communication Technology (JICT)

maintaining user trust through minimal false warnings. The
recall value of 88% indicates that the system successfully
identifies 88% of actual phishing URLs, providing substantial
protection coverage.

The Fl-score of 0.90 represents the harmonic mean of
precision and recall, confirming balanced performance across
both metrics. The ROC-AUC score of 0.96 demonstrates
excellent discrimination capability between classes, with the
model effectively separating phishing and legitimate URLs
across various threshold settings. The Log Loss value of 0.23
indicates well-calibrated probability estimates, essential for
threshold-based decision making. Finally, the Matthews
Correlation Coefficient (MCC) of 0.81 signifies strong
correlation between predictions and actual labels, accounting
for class imbalance and providing a robust performance
measure.

TABLE II
PERFORMANCE METRICS OF THE SELECTED
XGBOOST MODEL
Metric Value ()
Accuracy 90%
Precision 93%
Recall 88%
F1-Score 0.90
ROC-AUC 0.96
Log Loss 0.23
MCC 0.81

3) Real-time Performance Analysis

Real-time testing demonstrated that the integrated system
achieves URL classification within approximately 0.3 to 0.5
seconds from the moment of page load initiation. This latency
encompasses feature extraction within the browser extension,
network transmission to the Flask API backend, model
inference, and result transmission back to the extension.
Although domain registration and security-related attributes are
considered during feature design, the proposed system does not
perform live WHOIS or SSL/TLS queries during real-time
detection. All real-time decisions are made using URL-derived
features that can be extracted locally and processed
immediately. Network-bound operations such as WHOIS or
certificate retrieval are excluded from the inference path and
therefore do not contribute to runtime latency. The total
response time remains consistently under one second from
initial page load to on-screen warning display, meeting the
stringent performance requirements for practical deployment
without significantly degrading user browsing experience.

B. Browser Extension Deployment Results

The trained XGBoost model was successfully deployed
through a Flask-based REST API integrated with a Google

Volume 03. Issue 02 January (2026)

Chrome browser extension, enabling real-time phishing
detection during normal web browsing activities.
1) System Architecture and Workflow

The deployment architecture consists of two primary
components operating in tandem. The Chrome extension
functions as the client-side monitoring agent, intercepting
navigation events and extracting URL features using the
predefined feature engineering pipeline. Upon feature
extraction, the extension transmits the feature vector to the Flask
API backend via asynchronous HTTP POST request, ensuring
non-blocking operation that maintains browser responsiveness.

The Flask API backend loads the trained XGBoost model
upon initialization and maintains it in memory for rapid
inference. When receiving a feature vector, the API performs
classification inference and returns a structured JSON response
containing the prediction label (phishing or legitimate) along
with associated confidence scores. The extension processes this
response and triggers appropriate user interface actions based
on the classification result.
2) User Interface and Warning Mechanism

When a user navigates to a URL classified as phishing with
high confidence, the extension immediately displays a warning
message, as illustrated in Figure 7. The warning interface is
designed to be prominent yet non-intrusive, clearly
communicating the detected threat while providing options for
the user to proceed at their own discretion or navigate away to
safety. This approach balances security with user autonomy,
acknowledging that false positives may occasionally occur
while ensuring users are informed of potential risks.

Warning: Suspicious site detected
(© This page looks like a phishing attempt. Do not enter passwords or personal information,
livrres cofivcom

0 Warning

Suspected Phishing

This website has been reported for potential phishing.

Phishing i when & site attempts to steal sensitive information by falsely presenting 85 a safe

Leam Moee

Fig. 7: Phishing site detected by browser extension

The automatic detection and warning mechanism operates
transparently in the background, requiring no manual activation
or configuration from users. This zero-interaction security
model significantly enhances protection coverage, particularly
benefiting users who may lack the technical expertise to
manually identify phishing attempts.

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992

62

Journal of Information and Communication Technology (JICT)

Grouped Line Chart: Model Comparison Metrics (Log Scale)

core (Log Scale)
8

Volume 03. Issue 02 January (2026)

—a— Accuracy
Precision
—a— Recall
-~ F1 Score
—a— ROC AUC
—o— Log Loss
MCC

—— e —— & 2 -
- —— e — - . »\ - —
‘\/ ' '
> o a o & A
& & & ;\‘\ o & -~ & & <& & &
o i P J S ' & o o
< < &) v ol N & C o'
& S & B o o & < o &
RS ha & o & &)
< & d ¥ & & s
S

Model

Fig. 8: Grouped line chart log scale

C. Deployment Validation

Field testing of the deployed extension across diverse
browsing scenarios confirmed consistent performance across
various URL types and website categories. The system
successfully identified known phishing URLs from test datasets
while maintaining low false positive rates on legitimate
websites. The sub-second response time ensures seamless
integration into normal browsing workflows, with users
experiencing negligible latency impact. The lightweight
architecture of both the extension and API ensures scalability,
with the system capable of handling multiple concurrent
requests without performance degradation.

D.Analysis and Interpretation

The experimental results demonstrate that machine learning-
based approaches, particularly ensemble methods like
XGBoost, provide effective solutions for real-time phishing
detection. The achieved performance metrics indicate practical
feasibility for real-time deployment, with accuracy and
precision levels sufficient for practical deployment while
maintaining acceptable recall rates. The successful integration
of the trained model with a browser extension validates the
feasibility of deploying sophisticated machine learning models
in resource-constrained environments, with the sub-second
response time confirming that complex feature extraction and
model inference can be performed -efficiently without
compromising user experience.

The system's effectiveness can be attributed to the
comprehensive feature engineering approach that captures
lexical, statistical, domain-based, and semantic characteristics
of URLs. The combination of multiple feature categories
enables the model to identify phishing attempts through various
attack patterns, from domain obfuscation techniques to brand
impersonation strategies. However, the 88% recall rate indicates
that approximately 12% of phishing URLs may evade detection,
representing a limitation inherent to pattern-based classification
approaches. Additionally, the system's performance depends on
the representativeness of the training data, with novel phishing
strategies not represented in the training set potentially
challenging the model's generalization capability. Despite these
constraints, the achieved balance between detection accuracy

and computational efficiency demonstrates the viability of the
proposed approach for real-world deployment as a practical
phishing protection mechanism.

V.LIMITATIONS AND FUTURE WORK

While the proposed system demonstrates effective real-time
phishing detection with sub-second response times, several
limitations should be acknowledged. First, the dataset used in
this study represents a time-bounded snapshot collected from
publicly available phishing and legitimate URL repositories.
The evaluation employed random train—test splits, which enable
fair model comparison but do not explicitly assess temporal
generalization against newly emerging phishing URLs or
concept drift over time. Second, although domain and security-
related characteristics are considered at the feature design level,
the real-time detection pipeline relies primarily on URL-derived
lexical and structural features to maintain low latency. Live
network-dependent enrichment sources such as WHOIS or
SSL/TLS queries are excluded from the inference path, which
may limit access to certain contextual signals. Finally, the
current deployment architecture performs inference on a
backend server, requiring transmission of URL-level data.
Although data exposure is minimized and secured, this design
introduces inherent privacy considerations. Future work will
focus on evaluating temporal robustness using chronologically
ordered datasets, exploring periodic model retraining to address
evolving phishing strategies, and investigating privacy-
enhanced deployment alternatives, such as lightweight edge-
based inference within the browser extension.

VI.CONCLUSION

This research presented a real-time phishing URL detection
system utilizing machine learning integrated with a browser
extension. A dataset of 13,716 balanced URLs was collected
from trusted sources and processed through a comprehensive
feature engineering pipeline encompassing lexical, statistical,
domain-based, and semantic attributes. Systematic evaluation
of twelve classification algorithms identified XGBoost as the
optimal model, achieving 90.85% accuracy, 93.36% precision,
and an F1-score of 0.90. The system was successfully deployed
through a Flask API backend connected to a Google Chrome

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992

63

Journal of Information and Communication Technology (JICT)

extension, enabling automatic phishing detection with sub-
second response times during normal browsing activities. Real-
time testing validated the system's capability to identify
malicious URLs and display warnings without manual user
intervention, demonstrating the feasibility of deploying
sophisticated machine learning models in resource-constrained
browser environments. While the dataset size and pattern-based
approach present limitations for novel phishing techniques, the
achieved balance between detection accuracy and
computational efficiency confirms the viability of browser-
based machine learning security solutions for practical
cybersecurity applications.

REFERENCES

[1]S. Abad and H. Gholamy, “Evaluation of machine learning models for
classifying malicious URLs,” 2023.

[2]A. Baiomy, M. Mostafa, and A. Youssif, “Anti-Phishing Game Framework
to Educate Arabic Users: Avoidance of URLs Phishing Attacks,” Indian J. Sci.
Technol., vol. 12, no. 44, Pp- 01-10, 2019, doi:
10.17485/ijst/2019/v12i44/147850.

[3]1J. A. Ochu, G. L. O. Aimufua, H. Musa, and S. E. Chaku, “Detecting
phishing websites using large language model,” Sci. World J., vol. 20, no. 2,
pp. 692-697, 2025, doi: 10.4314/swj.v20i2.33.

[4]K. Subashini and V. Narmatha, “Detecting Phishing Websites using recent
Techniques: A Systematic Literature Review,” ITM Web Conf., vol. 57, p.
01008, 2023, doi: 10.1051/itmconf/20235701008.

[SIM. Aljabri et al., “Detecting Malicious URLs Using Machine Learning
Techniques: Review and Research Directions,” IEEE Access, vol. 10, pp.
121395-121417, 2022, doi: 10.1109/ACCESS.2022.3222307.

[6]C. M. Igwilo and V. T. Odumuyiwa, “Comparative Analysis of Ensemble
Learning and Non-Ensemble Machine Learning Algorithms for Phishing URL
Detection,” FUOYE J. Eng. Technol., vol. 7, no. 3, pp. 305-312, 2022, doi:
10.46792/fuoyejet.v7i3.807.

[71S. M. Wajid, T. Javed, and M. Mohd Su’ud, “Ensemble Learning-Powered
URL Phishing Detection: A Performance Driven Approach,” J. Informatics
Web Eng., vol. 3, mno. 2, pp. 134-145, Jun. 2024, doi:
10.33093/jiwe.2024.3.2.10.

[8]S. M. Alshahrani, N. A. Khan, J. Almalki, and W. Al Shehri, “URL Phishing
Detection Using Particle Swarm Optimization and Data Mining,” Comput.
Mater. Contin., vol. 73, mno. 3, pp. 5625-5640, 2022, doi:
10.32604/cmc.2022.030982.

[9IN. Koppula, V. P. Ganti, and P. Gandhe, “URL Based Phishing Detection,”
Int. J. Recent Technol. Eng., vol. 9, no. 1, pp. 1872-1875, May 2020, doi:
10.35940/ijrte.A2657.059120.

[10] G. Varshney, A. Raj, D. Sangwan, S. Abuadbba, R. Mishra, and Y. Gao,
“A login page transparency and visual similarity-based zero-day phishing
defense protocol,” Comput. Secur., vol. 158, no. 2007, 2025, doi:
10.1016/j.cose.2025.104598.

[11] P. Preeti and P. Sharma, “Evolving strategies in anti-phishing: an in-
depth analysis of detection techniques and future research directions,” Indones.
J. Electr. Eng. Comput. Sci., vol. 37, no. 3, p. 1726, 2025, doi:
10.11591/ijeecs.v37.i3.pp1726-1733.

[12] O. C. Angel, P. Melanie, P. Cristhian, R. Padilla-Vega, and C. José,
“Analyzing website characteristics and their impact on web traffic and
legitimacy classification for phishing detection: A structural equation modeling
approach,” Issues Inf. Syst., vol. 26, no. 2, pp. 150-161, 2025, doi:
10.48009/2_iis_112.

Volume 03. Issue 02 January (2026)

[13] K. Omari, “Comparative Study of Machine Learning Algorithms for
Phishing Website Detection,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 9, pp.
417425, 2023, doi: 10.14569/1JACSA.2023.0140945.

[14] sopnil nepal, hemant gurung, and roshan nepal, “Phishing URL
Detection Using CNN-LSTM and Random Forest Classifier,” Nov. 01, 2022.
doi: 10.21203/rs.3.15-2043842/v2.

[15] H. R. Alavala, S. Singh, P. Joshi, and S. Basavaraju, “Enhancing
Malicious URL Detection with Advanced Machine Learning Techniques,” st
Int. Conf. Adv. Comput. Sci. Electr. Electron. Commun. Technol. CE2CT 2025,
vol. 11, no. 8, pp. 151-156, 2025, doi: 10.1109/CE2CT64011.2025.10939290.

[16] A. Bharambe, “A Neural Network-Based Detection of Phishing URLSs
using Embeddings,” SSRN Electron. J., 2025, doi: 10.2139/ssrn.5380655.

[17] Y. S Tambe, “Phishing URL Detection Using Machine Learning,” J.
Adv. Res. Prod. Ind. Eng., vol. 10, no. 01, pp. 1-5, Sep. 2023, doi:
10.24321/2456.429X.202301.

[18] S.H. Nallamala, K. Namitha, K. Raviteja, K. S. Sumanth, and J. S. Kota,
“Phishing URL Detection using Machine Learning,” Int. J. Res. Appl. Sci. Eng.
Technol., vol. 12, mno. 3, pp. 1984-1995, Mar. 2024, doi:
10.22214/ijraset.2024.59261.

[19] B. K. Gontla, P. Gundu, P. J. Uppalapati, K. Narasimharao, and S. M.
Hussain, “A Machine Learning Approach to Identify Phishing Websites: A
Comparative Study of Classification Models and Ensemble Learning
Techniques,” EAI Endorsed Trans. Scalable Inf. Syst., vol. 10, no. 5, pp. 1-9,
2023, doi: 10.4108/eetsis.vi.3300.

[20] A. Al-qasmi, A. Al-anazi, L. Al-shehri, S. A-lshaman, and W. Al-atawi,
“INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING
Machine Learning-Based Phishing Detection System,” vol. 12, no. 4, pp. 4367—
4372,2024.

[21] P. Janarthanan, K. Pratiba, S. SriS, and B. Yashashwini, “EFFECTIVE
DETECTION OF MALICIOUS URLS USING VARIOUS MACHINE
LEARNING TECHNIQUES,” 2022. [Online]. Available: www.irjmets.com

[22] S. V. Oprea and A. Bara, “Detecting Malicious Uniform Resource
Locators Using an Applied Intelligence Framework,” Comput. Mater. Contin.,
vol. 79, no. 3, pp. 3827-3853, 2024, doi: 10.32604/cmc.2024.051598.

[23] K.S.Jishnu and B. Arthi, “Real-time phishing URL detection framework
using knowledge distilled ELECTRA,” Automatika, vol. 65, no. 4, pp. 1621—
1639, 2024, doi: 10.1080/00051144.2024.2415797.

[24] S. Iftikhar, O. A. Abdulkader, and B. A. A. R. Al-Ghamdi, “UPADM -
A Novel URL Phishing Attack Detection Model based on Machine Learning
and Deep Learning Algorithms,” Int. J. Cyber Criminol., vol. 18, no. 1, pp.
244-260, 2024, doi: 10.5281/zenodo.4766814.

[25] A. Karim, M. Shahroz, K. Mustofa, S. B. Belhaouari, and S. R. K. Joga,
“Phishing Detection System Through Hybrid Machine Learning Based on
URL,” IEEE Access, vol. 11, pp. 36805-36822, 2023, doi:
10.1109/ACCESS.2023.3252366.

[26] M. A. Adebowale, K. T. Lwin, and M. A. Hossain, “Intelligent phishing
detection scheme using deep learning algorithms,” J. Enterp. Inf. Manag., vol.
36, no. 3, pp. 747-766, 2023, doi: 10.1108/JEIM-01-2020-0036.

[27] R. Alazaidah et al., “Website Phishing Detection Using Machine
Learning Techniques,” J. Stat. Appl. Probab.,vol. 13,no. 1, pp. 119-129, 2024,
doi: 10.18576/jsap/130108.

[28] K. Thakur, M. L. Ali, M. A. Obaidat, and A. Kamruzzaman, “A
Systematic Review on Deep-Learning-Based Phishing Email Detection,”
Electron., vol. 12, no. 21, pp. 1-26, 2023, doi: 10.3390/electronics12214545.

[29] O. K. Sahingoz, E. Buber, and E. Kugu, “DEPHIDES: Deep Learning
Based Phishing Detection System,” [EEE Access, vol. 12, no. January, pp.
8052-8070, 2024, doi: 10.1109/ACCESS.2024.3352629.

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,
South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992

64

