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Abstract Phishing attacks continue to pose a significant cybersecurity threat by misleading users into disclosing sensitive 

information through fraudulent websites. This study presents a machine learning–based approach for detecting phishing websites 

using URL-based features. A dataset comprising phishing and legitimate URLs was collected from trusted sources, including 

PhishTank, OpenPhish, and Cisco Umbrella's Top Sites. Following preprocessing, key discriminative features such as URL length, 

HTTPS usage, special character frequency, and randomness indicators were extracted. Several classification algorithms, Random 

Forest, Support Vector Machine, Logistic Regression, and XGBoost, were trained and evaluated. Experimental results indicate 

that the XGBoost model achieved the highest accuracy of approximately 90%, demonstrating balanced detection performance with 

low computational overhead. The trained model was deployed through a Flask-based API and integrated with a web browser 

extension to enable real-time URL analysis and phishing alerts. The proposed system enables real-time phishing detection with an 

average inference latency of approximately 300–500 ms by deploying a lightweight, URL-feature–based machine learning model 

within a browser extension, without relying on blacklist databases or computationally heavy analysis. 
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I. INTRODUCTION 

N modern digital era, people use the internet every day. 

However, numerous problems accompany this widespread 

usage. One of the most significant threats is phishing attacks[1]. 

Attackers frequently create fake websites with user interfaces 

that look almost real[2][3]stealing private sensitive information 

such as passwords and bank account details. These attacks 

affect normal users, companies, and even government sites. The 

nature of phishing threats continues to evolve continuously[4] 

making detection increasingly challenging. 

Traditional phishing detection tools that rely on URL 

blacklists and basic rule-based filters are unable to identify 

newly created and zero-day phishing sites[5][6]. These 

conventional safety methods only work when a site is already 

marked as malicious. Attackers, however, are fast at creating 

new URLs, altering domain patterns, and employing evasion 

methods that existing systems cannot match. When hackers 

create a new phishing site, it often slips through traditional  
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defenses. Most available solutions rely on third-party phishing 

databases to recognize threats[7], leaving users vulnerable when a 

phishing site is novel or not yet listed in such databases. 

Furthermore, current research does not focus sufficiently on real-

time URL-feature-based detection with browser extensions and 

high accuracy. The majority of existing literature implements 

machine learning models in an offline mode and fails to include 

lightweight and instant URL analysis integrated into the browsing 

process. 

To address these limitations, a proactive detection system is 

needed that learns from URL patterns, domain names, and other 

subtle signals that normal users cannot see. Such a system can 

determine whether a link is safe or not, even if it is new and 

previously unseen. This research presents a browser extension that 

runs while people use the internet, monitoring the websites users 

visit and checking them with a trained machine learning model on 

the server. When a user opens any website, the extension reads the 

website URL and sends URL features to the backend, where a 

trained machine learning model checks the link and studies its 

patterns. The model examines URL features and compares the link 

with what it learned from thousands of real and phishing URLs. If 

it finds something strange or risky, it marks that website as 

phishing and the extension delivers a quick warning message to the 

user. Users do not need to do anything manually, as everything 

works in the background automatically, providing seamless, real-

time protection against evolving phishing threats. 

Real-Time URL-Based Phishing Detection 

Using XGBoost and Browser Extension 

Integration 
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II.LITERATURE REVIEW 

A. Phishing Attacks and Detection Techniques 

Phishing attacks represent one of the most dynamic and 

pervasive cybersecurity threats, continuously evolving to 

exploit vulnerabilities in user behavior and system security. 

Recent surveys indicate that attackers persistently refine their 

deceptive techniques, rendering conventional security measures 

increasingly inadequate in providing comprehensive 

protection[5][4]. 

Phishing attacks manifest through multiple vectors, each 

exploiting different aspects of digital communication and web 

browsing. URL-based phishing remains the most prevalent 

approach, where attackers craft malicious links that redirect 

users to fraudulent websites designed to mimic legitimate 

services[8][9]. These attacks have become increasingly 

sophisticated, employing homograph attacks, subdomain 

manipulation, and URL shortening services to disguise 

malicious intent[2]. Email phishing leverages social 

engineering principles to manipulate recipients into divulging 

credentials or executing harmful actions. Spoofed websites 

represent particularly dangerous threats, replicating the visual 

appearance and functionality of legitimate platforms with 

remarkable precision[10]. Browser-based phishing attacks 

exploit vulnerabilities within web browsers themselves, 

utilizing techniques such as tab-nabbing, clickjacking, and 

cross-site scripting to compromise user security without 

requiring navigation away from legitimate domains. 

The cybersecurity community has developed several 

traditional methodologies to combat phishing threats. Blacklist-

based detection maintains databases of known malicious URLs 

and domains, comparing accessed websites against these 

repositories to identify threats[5]. Organizations like Google 

Safe Browsing and PhishTank continuously update these 

databases, providing protection against previously identified 

threats. However, this reactive approach inherently suffers from 

temporal vulnerabilities. Heuristic-based methods attempt to 

overcome these limitations by analyzing website characteristics 

and behavioral patterns[11]. These approaches examine factors 

such as domain age, SSL certificate validity, presence of 

sensitive input forms, and similarity to known legitimate sites. 

Rule-based systems employ predefined criteria and decision 

trees to classify websites, considering elements like URL 

structure, HTML content patterns, and domain registration 

information[12]. 

Despite widespread adoption, traditional phishing detection 

techniques face significant limitations that compromise their 

effectiveness. The most critical weakness of blacklist-based 

approaches is the inevitable delay between phishing site 

deployment and blacklist updates. Conventional blacklist and 

rule-based systems struggle to keep pace with rapidly evolving 

attacker tactics[5][4]. Research indicates that phishing websites 

have an average lifespan of only 15-20 hours, yet blacklist 

propagation can take several hours or even days, creating 

substantial vulnerability windows during which users remain 

unprotected[6]. This temporal gap allows attackers to achieve 

their objectives before detection systems can respond. 

High false positive rates present another significant challenge, 

particularly for heuristic and rule-based systems[1]. Overly 

aggressive detection parameters can flag legitimate websites as 

suspicious, leading to user frustration and security alert fatigue, 

where users begin ignoring warnings altogether. Conversely, 

conservative parameters may miss sophisticated phishing attempts 

that carefully crafted appearance to evade detection rules. The lack 

of real-time protection capabilities represents perhaps the most 

fundamental limitation. As phishing techniques evolve rapidly, 

incorporating artificial intelligence, dynamic content generation, 

and personalized social engineering, static rule-based systems 

struggle to adapt[13]. 

Recognizing these limitations, there has been a firm trend of 

shifting from static signature-based methods toward data-driven 

machine learning and deep learning models for detecting malicious 

URLs[5][13]. This transition reflects the cybersecurity 

community's acknowledgment that adaptive, intelligent systems 

are necessary to combat the dynamic nature of modern phishing 

threats. Traditional methods typically cannot analyze contextual 

website behavior, user interaction patterns, or real-time content 

modifications that characterize contemporary phishing attacks[14]. 

Furthermore, these approaches often operate independently of user 

browsing context, failing to consider factors such as typical 

browsing habits, previously visited sites, or the legitimacy of 

pathways leading to potentially malicious sites. The emergence of 

zero-day phishing attacks, which exploit previously unknown 

vulnerabilities or employ entirely novel deception techniques, 

further exposes the inadequacy of retrospective detection methods 

relying on historical data and predefined patterns[10]. This 

evolution toward intelligent, adaptive detection mechanisms forms 

the foundation for modern browser-based security solutions 

capable of providing real-time protection against increasingly 

sophisticated threats. 

B. Machine Learning-Based Real-Time Phishing Detection in 

Browser Extensions 

The integration of machine learning algorithms into browser-

based phishing detection represents a paradigm shift from reactive 

security measures to proactive, intelligent threat identification. 

This data-driven approach leverages computational intelligence to 

analyze website characteristics in real-time, addressing the critical 

limitations inherent in traditional detection 

methodologies[15][16]. 

Early phishing detection research primarily employed lexical 

and domain features with classical machine learning algorithms 

including Support Vector Machines (SVM), Decision Trees, k-

Nearest Neighbors (KNN), and Random Forests[1][9]. These 

foundational studies demonstrated that even basic URL attributes 

such as length, count of special characters, token composition, and 

protocol signature (HTTP/HTTPS) could achieve over 90 percent 

precision with appropriate classifiers[9][17]. 

Comparative analyses across diverse machine learning 

algorithms have revealed important performance distinctions. 

Abad & Gholamy[1] compared SVM, Decision Tree, Random 

Forest, and KNN on mixed malicious URL datasets, finding that 

SVM provided the highest accuracy with careful parameter tuning. 

However, subsequent research indicates that ensemble models like 

Random Forest and Gradient Boosting often outperform simple 

linear models when evaluated on public datasets from PhishTank, 
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Kaggle, and similar sources[18][17]. These findings confirm 

that nonlinear ensembles better capture complex URL feature 

patterns compared to simple classifiers[19]. 

Recent developments emphasize ensemble learning and 

strategic feature selection as critical design choices in phishing 

URL detection systems. Wajid et al.[7] introduced an ensemble 

voting classifier with hybrid ensemble feature selection (HEFS) 

evaluated on DS-30 and DS-50 datasets, achieving accuracy 

between 96-98 percent using only approximately one-fifth of 

the original features. This demonstrates that intelligent feature 

selection not only improves computational efficiency but can 

also enhance model performance by reducing noise and 

overfitting[20]. Similarly, research comparing non-ensemble 

models versus ensemble classifiers across balanced phishing 

datasets examined Random Forest, Bagging, Stacking, 

AdaBoost, and Gradient Boost architectures[6]. These studies 

consistently show that ensemble approaches provide superior 

robustness and generalization capabilities compared to 

individual classifiers[19][21]. 

Subsequent research has built upon foundational approaches 

by incorporating larger datasets and additional engineered 

features, including domain age, number of subdomains, scale 

tokens, and entropy-based indicators[18][22]. The 

effectiveness of machine learning models fundamentally 

depends on the quality and relevance of extracted features. 

URL-based features constitute the primary category, 

encompassing characteristics such as URL length, presence of 

special characters, domain structure, and protocol usage[17]. 

Domain-related features provide crucial contextual 

information, including WHOIS registration details, DNS record 

analysis, domain reputation scores, and geographic location of 

hosting servers[8][22]. Webpage content features offer rich 

discriminative information by analyzing HTML structure, 

JavaScript behavior, external resource links, presence of login 

forms, and visual similarity to known legitimate sites[12][10]. 

Behavioral features, including page redirect patterns, popup 

behavior, and form submission destinations, provide additional 

classification dimensions[12]. 

Implementing machine learning models within browser 

extensions presents unique technical challenges demanding 

careful architectural consideration. Latency represents the most 

critical constraint, as users expect instantaneous page loading 

without perceptible delays introduced by security scanning[23]. 

Research indicates that detection latency exceeding 200-300 

milliseconds significantly degrades user experience, creating 

pressure to optimize model inference speed without sacrificing 

accuracy. Browser extensions operate within strict resource 

limitations, including memory constraints, CPU allocation 

restrictions, and sandboxed execution environments[7]. These 

constraints necessitate lightweight model architectures and 

efficient feature extraction pipelines. The balance between 

security and usability requires sophisticated user interface 

design, presenting warnings that are informative yet non-

intrusive[23]. Continuous model updating poses additional 

challenges, as phishing techniques evolve rapidly and models 

must adapt without requiring frequent extension updates that 

burden users[14]. Edge-based inference offers privacy 

advantages and reduces dependency on external services but 

amplifies resource constraints, while cloud-based approaches 

enable more sophisticated models but introduce latency and 

privacy concerns[24][22]. 

As summarized in Table I, recent phishing detection studies 

increasingly emphasize high classification accuracy through 

ensemble learning and deep learning architectures. Many of these 

approaches report accuracy levels between 96–99% in offline 

evaluations by leveraging computationally intensive feature sets, 

including HTML content, image analysis, word embeddings, and 

external services such as DNS or WHOIS queries. However, these 

design choices introduce significant inference latency, large model 

sizes, and dependencies on network-based lookups, which limit 

their suitability for real-time browser-based deployment. 

Moreover, several high-accuracy studies focus primarily on offline 

benchmarking and do not provide functional browser 

implementations or detailed latency analysis. This highlights a 

broader trend in the literature toward accuracy-driven evaluation, 

while practical deployment constraints such as latency, model size, 

and real-time usability remain comparatively underexplored. 

 

 
 
Fig. 1: Followed Methodology 

III.METHODOLOGY 

This section presents the comprehensive methodology employed 

to develop a real-time phishing detection system integrated with a 

browser extension. The proposed approach encompasses data 

collection, feature engineering, model development, 

hyperparameter optimization, and deployment through a Flask-

based API. Figure 1 illustrates the complete workflow of the 

system architecture. 

A. Data Collection and Preprocessing Image Files 

The dataset construction process involved aggregating URLs 

from multiple trusted public sources to ensure balanced 

representation of both malicious and legitimate websites. Phishing 

URLs were primarily sourced from PhishTank and OpenPhish 

repositories, while legitimate URLs were obtained from Cisco 

Umbrella Top Sites and DomCop databases. The compiled dataset 

comprised 13,716 URLs, maintaining an equal distribution with 

6,858 phishing URLs and 6,858 legitimate URLs to prevent class 

imbalance bias during model training. 
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TABLE I 

SUMMARY OF PHISHING DETECTION STUDIES AND RESEARCH GAPS 

 

ML = Machine Learning, DL = Deep Learning, ML–DL = Hybrid Machine Learning and Deep Learning, LR = Logistic Regression, 

SVM = Support Vector Machine, RF = Random Forest, DT = Decision Tree, GB = Gradient Boosting, XGB = Extreme Gradient 

Boosting, CNN = Convolutional Neural Network, LSTM = Long Short-Term Memory, NN = Neural Network, SEM = Structural 

Equation Modeling, HEFS = Hybrid Ensemble Feature Selection, KD-ELECTRA = Knowledge Distillation–based ELECTRA Model, 

UPADM = Unified Phishing Attack Detection Model, URL = Uniform Resource Locator, F1 = F1-score. 

The preprocessing pipeline consisted of several critical steps 

to ensure data quality and consistency. Initially, duplicate 

entries were identified and removed using hash-based 

deduplication techniques. Subsequently, broken links and URLs 

with missing components were filtered out through accessibility 

validation. Character normalization was applied to standardize 

the URL format, removing unnecessary whitespace and special 

characters that could introduce noise in feature extraction. Each 

URL was assigned a binary label, where 1 denotes phishing and 

0 represents legitimate URLs. The preprocessed dataset 

structure is depicted in Figure 2. 

Study Approach Category Techniques / Models Used Dataset Size / Type Feature Scope 

[9] Machine Learning URL-based ML 6,000 URLs Lexical 

[7] Machine Learning Ensemble (HEFS, RF) DS-30, DS-50 URL + Feature engineering 

[13] Machine Learning LR, SVM, RF, GB UCI dataset Feature-based 

[20] Machine Learning Random Forest Mendeley dataset URL + Domain 

[6] Machine Learning Ensemble ML Two datasets URL + DNS + HTML 

[18] Machine Learning GBoost, RF, DT Feature-based (30 features) URL + Statistical 

[19] Machine Learning LR, RF, SVM, Ensembles Mixed dataset Multi-feature 

[21] Machine Learning SVM Custom dataset Feature-heavy 

[14] Deep Learning CNN-LSTM, RF 11,430 URLs URL + Embeddings 

[22] Deep Learning / 

Hybrid 

Word2Vec, GloVe, XGB, CNN, LSTM Mixed datasets Text embeddings 

[23] Deep Learning KD-ELECTRA (Chrome  extension) 450k URLs Transformer embeddings 

[24] Hybrid ML–DL UPADM framework Large dataset Multi-modal 

[25] Hybrid Machine 

Learning 

LR, SVC, DT, RF, GBM, KNN + proposed 

LSD (LR+SVC+DT voting) 

~11,000 phishing & 

legitimate URLs (UCI-style) 

URL-based + handcrafted 

features 

[26] Deep Learning 

(Hybrid) 

CNN + LSTM (IPDS) ~1M URLs + >10k webpage 

images 

URL + HTML text + 

images + frames 

[27] Deep Learning RF, J48, FilteredClassifier, 24 ML models Two datasets (11,055 

instances; 1,353 instances) 

Feature-based (30 & 9 

engineered features) 

[28] Deep Learning 

(Survey) 

CNN, LSTM, RNN, Attention-based DL Multiple datasets (review 

paper) 

Text, email structure, 

embeddings 

[29] Large Language 

Model (LLM) 

LLaMA (character-level URL modeling) >2 million URLs URL character sequences 

(embedding-based) 
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Fig. 2: Dataset after preprocessing  

B. Feature Engineering 

Feature extraction constitutes a crucial phase in transforming 

raw URL strings into quantifiable attributes suitable for 

machine learning algorithms. The feature engineering process 

encompassed four distinct categories, each capturing different 

behavioral characteristics of URLs. 

• Lexical Features: This category extracts structural 

properties including URL length, count of digits, number of 

hyphens, presence of special characters, and token distribution. 

These features effectively capture obfuscation techniques 

commonly employed in phishing attacks. 

• Character Ratio Features: Statistical measures such as 

vowel-to-character ratio, consonant-to-character ratio, digit-to-

character ratio, and entropy-based randomness metrics were 

computed. These ratios help identify randomly generated 

domains and unusual character distributions characteristic of 

malicious URLs. 

• Domain and Security Features: Security-related attributes 

including HTTPS protocol usage, top-level domain (TLD) 

classification, presence of IP-based domains, and suspicious 

domain patterns were extracted. These features leverage domain 

registration and security certificate information to assess URL 

legitimacy. 

• Keyword and Brand Features: Semantic analysis was 

performed to detect phishing-indicative keywords such as 

"login," "verify," "update," and "secure." Additionally, brand 

imitation detection and brand similarity scoring algorithms were 

implemented to identify spoofing attempts targeting well-

known organizations. 

C. Model Selection and Training 

1) Algorithm Evaluation 

Twelve machine learning algorithms were evaluated to 

identify the optimal classifier for phishing detection. The 

evaluated models included Logistic Regression, Decision Tree, 

Random Forest, Gradient Boosting, Naive Bayes, K-Nearest 

Neighbors (KNN), Support Vector Machine (SVM), and 

XGBoost, among others. All models were trained and evaluated 

under identical conditions to ensure fair comparison. 

2) Data Partitioning 

The dataset was partitioned using an 80-20 train-test split 

ratio. This ratio was selected to allocate sufficient training 

samples for model learning while retaining an adequate test set 

for unbiased performance evaluation. The stratified splitting 

technique ensured that both subsets maintained the original 50-

50 distribution of phishing and legitimate URLs. 

3) Baseline Training Protocol 

The training protocol involved loading the engineered feature 

matrix (X) and corresponding label vector (y), followed by 

systematic training of each model on the training subset. 

Predictions were generated on the test subset, and 

comprehensive performance metrics were computed including 

Accuracy, Precision, Recall, F1-score, ROC-AUC, Log Loss, 

and Matthews Correlation Coefficient (MCC). Algorithm-

specific parameters were configured as follows: maximum 

iterations set to 1000 for Logistic Regression convergence, 

probability estimation enabled for SVM to support probabilistic 

predictions, and log loss specified as the evaluation metric for 

XGBoost to suppress convergence warnings. 

D. Hyperparameter Optimization 

Following preliminary evaluation, XGBoost demonstrated 

superior performance and was selected for extensive 

hyperparameter tuning. The optimization process aimed to 

enhance predictive performance and generalization capability 

through systematic parameter space exploration. 

1) Optimization Strategy 

RandomizedSearchCV was employed for efficient 

hyperparameter search, executing 100 iterations with 5-fold 

cross-validation. The optimization process was conducted on 

Google Colab infrastructure to leverage computational 

resources. The dataset partitioning was modified to a 70-15-15 

split for training, validation, and testing respectively, providing 

stable results while maintaining statistical representativeness in 

both validation and test sets. 

2) Parameter Space 

The hyperparameter search space encompassed the following 

ranges: 

• n_estimators: [200, 1500] - controlling ensemble size 

• max_depth: [3, 12] - limiting tree complexity 

• learning_rate: [0.001, 0.3] - adjusting gradient descent step 

size 

• subsample: [0.6, 1.0] - fraction of samples per tree 

• colsample_bytree: [0.6, 1.0] - fraction of features per tree 

• min_child_weight: [1, 10] - minimum sum of instance 

weight in child 

• gamma: [0.0001, 1.0] - minimum loss reduction for 

splitting 

• reg_alpha: [0.000001, 0.1] - L1 regularization term 

• reg_lambda: [0.001, 1.0] - L2 regularization term 
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Fig. 3:   Hyperparameters vs mean_test_score (accuracy)

 

3) Optimal Configuration 

The optimization process converged to the following optimal 

hyperparameter configuration: n_estimators = 1479, max_depth 

= 9, learning_rate = 0.0057, colsample_bytree = 0.99, 

min_child_weight = 1, and gamma = 0.0002. This configuration 

achieved a mean 5-fold cross-validation accuracy of 0.90199, 

demonstrating consistent performance across all folds. The 

relationship between hyperparameter combinations and test 

accuracy is visualized in Figure 3. 

4) Threshold Optimization 

Classification threshold analysis was conducted across the 

range [0.05, 0.95] to identify the optimal decision boundary. 

Various performance metrics were evaluated at each threshold 

point, as illustrated in Figure 4, enabling selection of a threshold 

that balances precision and recall according to application 

requirements. 

 

 
 
Fig. 4: Metric vs Threshold chart 

E. Feature Importance Analysis 

XGBoost's intrinsic feature importance metrics provided 

insights into feature contributions to the model's decision-

making process. Three important measures were analyzed: 

• Weight-based Importance: Features such as 

entropy_domain, brand_similarity, vowel_ratio, and 

consonant_ratio exhibited the highest weights, indicating 

frequent usage in tree construction (Figure 6). 

• Cover-based Importance: The analysis revealed that 

has_hyphen, num_hyphens, and contains_phishing_words 

demonstrated maximum coverage values, suggesting their 

significant role in sample classification.  

• Gain-based Importance: Features has_hyphen and 

num_hyphens achieved the highest gain scores, indicating their 

substantial contribution to prediction accuracy improvements. 

The convergence of these importance metrics confirms that 

structural anomalies (hyphens), domain randomness (entropy), 

and brand imitation attempts constitute the most discriminative 

features for phishing detection. 

F. Model Evaluation and Comparison 

Comprehensive performance evaluation was conducted on all 

twelve machine learning algorithms using identical feature sets 

and data splits. Each model generated both categorical 

predictions and probability estimates for the positive class 

where applicable. The evaluation metrics encompassed 

Accuracy, Precision, Recall, F1-score, ROC-AUC, and Log 

Loss. 

G. System Deployment and Integration 

The deployment architecture comprises a Flask-based REST 

API backend and a Google Chrome browser extension frontend, 

enabling real-time phishing detection during web browsing. 
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1) Backend API Development 

The Flask framework was selected for API development due 

to its lightweight architecture and rapid deployment capabilities. 

The API loads the trained model upon initialization and exposes 

an endpoint for URL feature evaluation. Upon receiving a 

feature vector from the browser extension, the API performs 

real-time inference and returns a classification result with 

associated confidence scores. 

 

2) Browser Extension Integration 

The Chrome extension operates as a background service that 

monitors navigation events. When a user initiates navigation to 

a new URL, the extension extracts the predefined feature set 

from the URL string and transmits it to the Flask API via an 

asynchronous HTTP POST request. The extension processes 

the API response and, in cases where the URL is classified as 

phishing with high confidence, displays an immediate warning 

alert to prevent page loading. This architecture ensures 

continuous, transparent protection without requiring explicit 

user interaction, effectively functioning as an autonomous 

security layer during web browsing sessions. 

 

3) Real-time Processing Pipeline 

The complete processing pipeline operates within 

milliseconds, ensuring minimal latency impact on browsing 

experience. Feature extraction occurs client-side within the 

extension, while model inference is performed server-side on 

the Flask API. This distributed architecture balances 

computational efficiency with model sophistication, enabling 

deployment of complex machine learning models without 

compromising browser performance. 

 

 

 
 
Fig. 5: Model testing result table 

IV.RESULTS AND DISCUSSION 

This section presents the experimental results obtained from 

evaluating twelve machine learning algorithms for phishing 

URL detection, followed by an analysis of the deployed browser 

extension's real-time performance. The comprehensive 

evaluation encompasses classification accuracy, computational 

efficiency, and practical deployment validation. 

 
Fig. 6:  XGBoost Importance (weight) 

A. Model Performance Evaluation 

Twelve classification algorithms were evaluated under 

identical experimental conditions to ensure fair comparison. 

The evaluated models include Random Forest, Logistic 

Regression, Decision Tree, K-Nearest Neighbors (KNN), 

XGBoost, Naive Bayes, Support Vector Machine (SVM), 

Gradient Boosting, AdaBoost, Bagging Classifier, Ridge 

Classifier, and Stochastic Gradient Descent (SGD) Classifier. 

Each model was trained on the engineered feature set and 

evaluated using standard classification metrics. 

 

1) XGBoost: Selected Model 

Based on comprehensive performance analysis, XGBoost was 

selected as the optimal classifier for deployment. The model 

achieved an accuracy of 90.85%, demonstrating robust 

classification capability across both phishing and legitimate 

URL classes. The precision score of 93.36% indicates high 

reliability in positive predictions, minimizing false alarms that 

could negatively impact user experience. The F1-score of 0.90 

reflects balanced performance between precision and recall, 

which is critical for phishing detection systems where both false 

positives and false negatives carry significant consequences 

While Random Forest exhibited competitive performance 

with metrics closely approaching XGBoost, the latter 

demonstrated superior balance between precision and recall 

among the evaluated classifiers, making it more suitable for 

real-time deployment scenarios. Although higher accuracy 

values have been reported in the literature, many such 

approaches employ computationally intensive models or offline 

evaluation settings; in contrast, this work prioritizes low-

latency, lightweight deployment suitable for browser 

extensions.  

 

2) Comprehensive Performance Metrics 

Table II presents the detailed performance metrics for the 

selected XGBoost model across seven key evaluation criteria. 

The model achieved an accuracy of approximately 90%, 

indicating correct classification in nine out of ten URLs. The 

precision of 93% demonstrates that when the system flags a 

URL as phishing, it is correct 93% of the time, thereby 
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maintaining user trust through minimal false warnings. The 

recall value of 88% indicates that the system successfully 

identifies 88% of actual phishing URLs, providing substantial 

protection coverage. 

The F1-score of 0.90 represents the harmonic mean of 

precision and recall, confirming balanced performance across 

both metrics. The ROC-AUC score of 0.96 demonstrates 

excellent discrimination capability between classes, with the 

model effectively separating phishing and legitimate URLs 

across various threshold settings. The Log Loss value of 0.23 

indicates well-calibrated probability estimates, essential for 

threshold-based decision making. Finally, the Matthews 

Correlation Coefficient (MCC) of 0.81 signifies strong 

correlation between predictions and actual labels, accounting 

for class imbalance and providing a robust performance 

measure. 

 

TABLE II 

PERFORMANCE METRICS OF THE SELECTED 

XGBOOST MODEL 

Metric Value (≈) 

Accuracy 90% 

Precision 93% 

Recall 88% 

F1-Score 0.90 

ROC-AUC 0.96 

Log Loss 0.23 

MCC 0.81 

 

3) Real-time Performance Analysis 

Real-time testing demonstrated that the integrated system 

achieves URL classification within approximately 0.3 to 0.5 

seconds from the moment of page load initiation. This latency 

encompasses feature extraction within the browser extension, 

network transmission to the Flask API backend, model 

inference, and result transmission back to the extension. 

Although domain registration and security-related attributes are 

considered during feature design, the proposed system does not 

perform live WHOIS or SSL/TLS queries during real-time 

detection. All real-time decisions are made using URL-derived 

features that can be extracted locally and processed 

immediately. Network-bound operations such as WHOIS or 

certificate retrieval are excluded from the inference path and 

therefore do not contribute to runtime latency. The total 

response time remains consistently under one second from 

initial page load to on-screen warning display, meeting the 

stringent performance requirements for practical deployment 

without significantly degrading user browsing experience. 

B. Browser Extension Deployment Results 

The trained XGBoost model was successfully deployed 

through a Flask-based REST API integrated with a Google 

Chrome browser extension, enabling real-time phishing 

detection during normal web browsing activities. 

1) System Architecture and Workflow 

The deployment architecture consists of two primary 

components operating in tandem. The Chrome extension 

functions as the client-side monitoring agent, intercepting 

navigation events and extracting URL features using the 

predefined feature engineering pipeline. Upon feature 

extraction, the extension transmits the feature vector to the Flask 

API backend via asynchronous HTTP POST request, ensuring 

non-blocking operation that maintains browser responsiveness. 

The Flask API backend loads the trained XGBoost model 

upon initialization and maintains it in memory for rapid 

inference. When receiving a feature vector, the API performs 

classification inference and returns a structured JSON response 

containing the prediction label (phishing or legitimate) along 

with associated confidence scores. The extension processes this 

response and triggers appropriate user interface actions based 

on the classification result. 

2) User Interface and Warning Mechanism 

When a user navigates to a URL classified as phishing with 

high confidence, the extension immediately displays a warning 

message, as illustrated in Figure 7. The warning interface is 

designed to be prominent yet non-intrusive, clearly 

communicating the detected threat while providing options for 

the user to proceed at their own discretion or navigate away to 

safety. This approach balances security with user autonomy, 

acknowledging that false positives may occasionally occur 

while ensuring users are informed of potential risks. 

 

 
Fig. 7: Phishing site detected by browser extension 

 

The automatic detection and warning mechanism operates 

transparently in the background, requiring no manual activation 

or configuration from users. This zero-interaction security 

model significantly enhances protection coverage, particularly 

benefiting users who may lack the technical expertise to 

manually identify phishing attempts. 
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Fig. 8: Grouped line chart log scale 

C. Deployment Validation 

Field testing of the deployed extension across diverse 

browsing scenarios confirmed consistent performance across 

various URL types and website categories. The system 

successfully identified known phishing URLs from test datasets 

while maintaining low false positive rates on legitimate 

websites. The sub-second response time ensures seamless 

integration into normal browsing workflows, with users 

experiencing negligible latency impact. The lightweight 

architecture of both the extension and API ensures scalability, 

with the system capable of handling multiple concurrent 

requests without performance degradation. 

D. Analysis and Interpretation 

The experimental results demonstrate that machine learning-

based approaches, particularly ensemble methods like 

XGBoost, provide effective solutions for real-time phishing 

detection. The achieved performance metrics indicate practical 

feasibility for real-time deployment, with accuracy and 

precision levels sufficient for practical deployment while 

maintaining acceptable recall rates. The successful integration 

of the trained model with a browser extension validates the 

feasibility of deploying sophisticated machine learning models 

in resource-constrained environments, with the sub-second 

response time confirming that complex feature extraction and 

model inference can be performed efficiently without 

compromising user experience. 

The system's effectiveness can be attributed to the 

comprehensive feature engineering approach that captures 

lexical, statistical, domain-based, and semantic characteristics 

of URLs. The combination of multiple feature categories 

enables the model to identify phishing attempts through various 

attack patterns, from domain obfuscation techniques to brand 

impersonation strategies. However, the 88% recall rate indicates 

that approximately 12% of phishing URLs may evade detection, 

representing a limitation inherent to pattern-based classification 

approaches. Additionally, the system's performance depends on 

the representativeness of the training data, with novel phishing 

strategies not represented in the training set potentially 

challenging the model's generalization capability. Despite these 

constraints, the achieved balance between detection accuracy 

and computational efficiency demonstrates the viability of the 

proposed approach for real-world deployment as a practical 

phishing protection mechanism. 

V.LIMITATIONS AND FUTURE WORK 

While the proposed system demonstrates effective real-time 

phishing detection with sub-second response times, several 

limitations should be acknowledged. First, the dataset used in 

this study represents a time-bounded snapshot collected from 

publicly available phishing and legitimate URL repositories. 

The evaluation employed random train–test splits, which enable 

fair model comparison but do not explicitly assess temporal 

generalization against newly emerging phishing URLs or 

concept drift over time. Second, although domain and security-

related characteristics are considered at the feature design level, 

the real-time detection pipeline relies primarily on URL-derived 

lexical and structural features to maintain low latency. Live 

network-dependent enrichment sources such as WHOIS or 

SSL/TLS queries are excluded from the inference path, which 

may limit access to certain contextual signals. Finally, the 

current deployment architecture performs inference on a 

backend server, requiring transmission of URL-level data. 

Although data exposure is minimized and secured, this design 

introduces inherent privacy considerations. Future work will 

focus on evaluating temporal robustness using chronologically 

ordered datasets, exploring periodic model retraining to address 

evolving phishing strategies, and investigating privacy-

enhanced deployment alternatives, such as lightweight edge-

based inference within the browser extension. 

VI.CONCLUSION 

This research presented a real-time phishing URL detection 

system utilizing machine learning integrated with a browser 

extension. A dataset of 13,716 balanced URLs was collected 

from trusted sources and processed through a comprehensive 

feature engineering pipeline encompassing lexical, statistical, 

domain-based, and semantic attributes. Systematic evaluation 

of twelve classification algorithms identified XGBoost as the 

optimal model, achieving 90.85% accuracy, 93.36% precision, 

and an F1-score of 0.90. The system was successfully deployed 

through a Flask API backend connected to a Google Chrome 
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extension, enabling automatic phishing detection with sub-

second response times during normal browsing activities. Real-

time testing validated the system's capability to identify 

malicious URLs and display warnings without manual user 

intervention, demonstrating the feasibility of deploying 

sophisticated machine learning models in resource-constrained 

browser environments. While the dataset size and pattern-based 

approach present limitations for novel phishing techniques, the 

achieved balance between detection accuracy and 

computational efficiency confirms the viability of browser-

based machine learning security solutions for practical 

cybersecurity applications. 
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