
Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 55

K.U.T. Siriwardhana, A. Fathima Sharfana, and R.M. Nayanajith Rathnayaka

Abstract Phishing attacks continue to pose a significant cybersecurity threat by misleading users into disclosing sensitive

information through fraudulent websites. This study presents a machine learning–based approach for detecting phishing websites

using URL-based features. A dataset comprising phishing and legitimate URLs was collected from trusted sources, including

PhishTank, OpenPhish, and Cisco Umbrella's Top Sites. Following preprocessing, key discriminative features such as URL length,

HTTPS usage, special character frequency, and randomness indicators were extracted. Several classification algorithms, Random

Forest, Support Vector Machine, Logistic Regression, and XGBoost, were trained and evaluated. Experimental results indicate

that the XGBoost model achieved the highest accuracy of approximately 90%, demonstrating balanced detection performance with

low computational overhead. The trained model was deployed through a Flask-based API and integrated with a web browser

extension to enable real-time URL analysis and phishing alerts. The proposed system enables real-time phishing detection with an

average inference latency of approximately 300–500 ms by deploying a lightweight, URL-feature–based machine learning model

within a browser extension, without relying on blacklist databases or computationally heavy analysis.

Index Terms— Cybersecurity, Machine Learning, Phishing Detection, Real-time Detection, XGBoost

I. INTRODUCTION

N modern digital era, people use the internet every day.

However, numerous problems accompany this widespread

usage. One of the most significant threats is phishing attacks[1].

Attackers frequently create fake websites with user interfaces

that look almost real[2][3]stealing private sensitive information

such as passwords and bank account details. These attacks

affect normal users, companies, and even government sites. The

nature of phishing threats continues to evolve continuously[4]

making detection increasingly challenging.

Traditional phishing detection tools that rely on URL

blacklists and basic rule-based filters are unable to identify

newly created and zero-day phishing sites[5][6]. These

conventional safety methods only work when a site is already

marked as malicious. Attackers, however, are fast at creating

new URLs, altering domain patterns, and employing evasion

methods that existing systems cannot match. When hackers

create a new phishing site, it often slips through traditional

K.U.T. Siriwardhana is a graduate from the Department of ICT, South

Eastern University of Sri Lanka, Sri Lanka.

A. Fathima Sharfana is a Lecturer (Prob) at the Department of ICT, South

Eastern University of Sri Lanka, Sri Lanka. (Email: sharfana.atham@seu.ac.lk)

R.M. Nayanajith Rathnayaka is a demonstrator at the Department of ICT,

South Eastern University of Sri Lanka, Sri Lanka. (Email:

nayanajith@seu.ac.lk)

defenses. Most available solutions rely on third-party phishing

databases to recognize threats[7], leaving users vulnerable when a

phishing site is novel or not yet listed in such databases.

Furthermore, current research does not focus sufficiently on real-

time URL-feature-based detection with browser extensions and

high accuracy. The majority of existing literature implements

machine learning models in an offline mode and fails to include

lightweight and instant URL analysis integrated into the browsing

process.

To address these limitations, a proactive detection system is

needed that learns from URL patterns, domain names, and other

subtle signals that normal users cannot see. Such a system can

determine whether a link is safe or not, even if it is new and

previously unseen. This research presents a browser extension that

runs while people use the internet, monitoring the websites users

visit and checking them with a trained machine learning model on

the server. When a user opens any website, the extension reads the

website URL and sends URL features to the backend, where a

trained machine learning model checks the link and studies its

patterns. The model examines URL features and compares the link

with what it learned from thousands of real and phishing URLs. If

it finds something strange or risky, it marks that website as

phishing and the extension delivers a quick warning message to the

user. Users do not need to do anything manually, as everything

works in the background automatically, providing seamless, real-

time protection against evolving phishing threats.

Real-Time URL-Based Phishing Detection

Using XGBoost and Browser Extension

Integration

I

mailto:sharfana.atham@seu.ac.lk
mailto:nayanajith@seu.ac.lk

Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 56

II.LITERATURE REVIEW

A. Phishing Attacks and Detection Techniques

Phishing attacks represent one of the most dynamic and

pervasive cybersecurity threats, continuously evolving to

exploit vulnerabilities in user behavior and system security.

Recent surveys indicate that attackers persistently refine their

deceptive techniques, rendering conventional security measures

increasingly inadequate in providing comprehensive

protection[5][4].

Phishing attacks manifest through multiple vectors, each

exploiting different aspects of digital communication and web

browsing. URL-based phishing remains the most prevalent

approach, where attackers craft malicious links that redirect

users to fraudulent websites designed to mimic legitimate

services[8][9]. These attacks have become increasingly

sophisticated, employing homograph attacks, subdomain

manipulation, and URL shortening services to disguise

malicious intent[2]. Email phishing leverages social

engineering principles to manipulate recipients into divulging

credentials or executing harmful actions. Spoofed websites

represent particularly dangerous threats, replicating the visual

appearance and functionality of legitimate platforms with

remarkable precision[10]. Browser-based phishing attacks

exploit vulnerabilities within web browsers themselves,

utilizing techniques such as tab-nabbing, clickjacking, and

cross-site scripting to compromise user security without

requiring navigation away from legitimate domains.

The cybersecurity community has developed several

traditional methodologies to combat phishing threats. Blacklist-

based detection maintains databases of known malicious URLs

and domains, comparing accessed websites against these

repositories to identify threats[5]. Organizations like Google

Safe Browsing and PhishTank continuously update these

databases, providing protection against previously identified

threats. However, this reactive approach inherently suffers from

temporal vulnerabilities. Heuristic-based methods attempt to

overcome these limitations by analyzing website characteristics

and behavioral patterns[11]. These approaches examine factors

such as domain age, SSL certificate validity, presence of

sensitive input forms, and similarity to known legitimate sites.

Rule-based systems employ predefined criteria and decision

trees to classify websites, considering elements like URL

structure, HTML content patterns, and domain registration

information[12].

Despite widespread adoption, traditional phishing detection

techniques face significant limitations that compromise their

effectiveness. The most critical weakness of blacklist-based

approaches is the inevitable delay between phishing site

deployment and blacklist updates. Conventional blacklist and

rule-based systems struggle to keep pace with rapidly evolving

attacker tactics[5][4]. Research indicates that phishing websites

have an average lifespan of only 15-20 hours, yet blacklist

propagation can take several hours or even days, creating

substantial vulnerability windows during which users remain

unprotected[6]. This temporal gap allows attackers to achieve

their objectives before detection systems can respond.

High false positive rates present another significant challenge,

particularly for heuristic and rule-based systems[1]. Overly

aggressive detection parameters can flag legitimate websites as

suspicious, leading to user frustration and security alert fatigue,

where users begin ignoring warnings altogether. Conversely,

conservative parameters may miss sophisticated phishing attempts

that carefully crafted appearance to evade detection rules. The lack

of real-time protection capabilities represents perhaps the most

fundamental limitation. As phishing techniques evolve rapidly,

incorporating artificial intelligence, dynamic content generation,

and personalized social engineering, static rule-based systems

struggle to adapt[13].

Recognizing these limitations, there has been a firm trend of

shifting from static signature-based methods toward data-driven

machine learning and deep learning models for detecting malicious

URLs[5][13]. This transition reflects the cybersecurity

community's acknowledgment that adaptive, intelligent systems

are necessary to combat the dynamic nature of modern phishing

threats. Traditional methods typically cannot analyze contextual

website behavior, user interaction patterns, or real-time content

modifications that characterize contemporary phishing attacks[14].

Furthermore, these approaches often operate independently of user

browsing context, failing to consider factors such as typical

browsing habits, previously visited sites, or the legitimacy of

pathways leading to potentially malicious sites. The emergence of

zero-day phishing attacks, which exploit previously unknown

vulnerabilities or employ entirely novel deception techniques,

further exposes the inadequacy of retrospective detection methods

relying on historical data and predefined patterns[10]. This

evolution toward intelligent, adaptive detection mechanisms forms

the foundation for modern browser-based security solutions

capable of providing real-time protection against increasingly

sophisticated threats.

B. Machine Learning-Based Real-Time Phishing Detection in

Browser Extensions

The integration of machine learning algorithms into browser-

based phishing detection represents a paradigm shift from reactive

security measures to proactive, intelligent threat identification.

This data-driven approach leverages computational intelligence to

analyze website characteristics in real-time, addressing the critical

limitations inherent in traditional detection

methodologies[15][16].

Early phishing detection research primarily employed lexical

and domain features with classical machine learning algorithms

including Support Vector Machines (SVM), Decision Trees, k-

Nearest Neighbors (KNN), and Random Forests[1][9]. These

foundational studies demonstrated that even basic URL attributes

such as length, count of special characters, token composition, and

protocol signature (HTTP/HTTPS) could achieve over 90 percent

precision with appropriate classifiers[9][17].

Comparative analyses across diverse machine learning

algorithms have revealed important performance distinctions.

Abad & Gholamy[1] compared SVM, Decision Tree, Random

Forest, and KNN on mixed malicious URL datasets, finding that

SVM provided the highest accuracy with careful parameter tuning.

However, subsequent research indicates that ensemble models like

Random Forest and Gradient Boosting often outperform simple

linear models when evaluated on public datasets from PhishTank,

Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 57

Kaggle, and similar sources[18][17]. These findings confirm

that nonlinear ensembles better capture complex URL feature

patterns compared to simple classifiers[19].

Recent developments emphasize ensemble learning and

strategic feature selection as critical design choices in phishing

URL detection systems. Wajid et al.[7] introduced an ensemble

voting classifier with hybrid ensemble feature selection (HEFS)

evaluated on DS-30 and DS-50 datasets, achieving accuracy

between 96-98 percent using only approximately one-fifth of

the original features. This demonstrates that intelligent feature

selection not only improves computational efficiency but can

also enhance model performance by reducing noise and

overfitting[20]. Similarly, research comparing non-ensemble

models versus ensemble classifiers across balanced phishing

datasets examined Random Forest, Bagging, Stacking,

AdaBoost, and Gradient Boost architectures[6]. These studies

consistently show that ensemble approaches provide superior

robustness and generalization capabilities compared to

individual classifiers[19][21].

Subsequent research has built upon foundational approaches

by incorporating larger datasets and additional engineered

features, including domain age, number of subdomains, scale

tokens, and entropy-based indicators[18][22]. The

effectiveness of machine learning models fundamentally

depends on the quality and relevance of extracted features.

URL-based features constitute the primary category,

encompassing characteristics such as URL length, presence of

special characters, domain structure, and protocol usage[17].

Domain-related features provide crucial contextual

information, including WHOIS registration details, DNS record

analysis, domain reputation scores, and geographic location of

hosting servers[8][22]. Webpage content features offer rich

discriminative information by analyzing HTML structure,

JavaScript behavior, external resource links, presence of login

forms, and visual similarity to known legitimate sites[12][10].

Behavioral features, including page redirect patterns, popup

behavior, and form submission destinations, provide additional

classification dimensions[12].

Implementing machine learning models within browser

extensions presents unique technical challenges demanding

careful architectural consideration. Latency represents the most

critical constraint, as users expect instantaneous page loading

without perceptible delays introduced by security scanning[23].

Research indicates that detection latency exceeding 200-300

milliseconds significantly degrades user experience, creating

pressure to optimize model inference speed without sacrificing

accuracy. Browser extensions operate within strict resource

limitations, including memory constraints, CPU allocation

restrictions, and sandboxed execution environments[7]. These

constraints necessitate lightweight model architectures and

efficient feature extraction pipelines. The balance between

security and usability requires sophisticated user interface

design, presenting warnings that are informative yet non-

intrusive[23]. Continuous model updating poses additional

challenges, as phishing techniques evolve rapidly and models

must adapt without requiring frequent extension updates that

burden users[14]. Edge-based inference offers privacy

advantages and reduces dependency on external services but

amplifies resource constraints, while cloud-based approaches

enable more sophisticated models but introduce latency and

privacy concerns[24][22].

As summarized in Table I, recent phishing detection studies

increasingly emphasize high classification accuracy through

ensemble learning and deep learning architectures. Many of these

approaches report accuracy levels between 96–99% in offline

evaluations by leveraging computationally intensive feature sets,

including HTML content, image analysis, word embeddings, and

external services such as DNS or WHOIS queries. However, these

design choices introduce significant inference latency, large model

sizes, and dependencies on network-based lookups, which limit

their suitability for real-time browser-based deployment.

Moreover, several high-accuracy studies focus primarily on offline

benchmarking and do not provide functional browser

implementations or detailed latency analysis. This highlights a

broader trend in the literature toward accuracy-driven evaluation,

while practical deployment constraints such as latency, model size,

and real-time usability remain comparatively underexplored.

Fig. 1: Followed Methodology

III.METHODOLOGY

This section presents the comprehensive methodology employed

to develop a real-time phishing detection system integrated with a

browser extension. The proposed approach encompasses data

collection, feature engineering, model development,

hyperparameter optimization, and deployment through a Flask-

based API. Figure 1 illustrates the complete workflow of the

system architecture.

A. Data Collection and Preprocessing Image Files

The dataset construction process involved aggregating URLs

from multiple trusted public sources to ensure balanced

representation of both malicious and legitimate websites. Phishing

URLs were primarily sourced from PhishTank and OpenPhish

repositories, while legitimate URLs were obtained from Cisco

Umbrella Top Sites and DomCop databases. The compiled dataset

comprised 13,716 URLs, maintaining an equal distribution with

6,858 phishing URLs and 6,858 legitimate URLs to prevent class

imbalance bias during model training.

Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 58

TABLE I

SUMMARY OF PHISHING DETECTION STUDIES AND RESEARCH GAPS

ML = Machine Learning, DL = Deep Learning, ML–DL = Hybrid Machine Learning and Deep Learning, LR = Logistic Regression,

SVM = Support Vector Machine, RF = Random Forest, DT = Decision Tree, GB = Gradient Boosting, XGB = Extreme Gradient

Boosting, CNN = Convolutional Neural Network, LSTM = Long Short-Term Memory, NN = Neural Network, SEM = Structural

Equation Modeling, HEFS = Hybrid Ensemble Feature Selection, KD-ELECTRA = Knowledge Distillation–based ELECTRA Model,

UPADM = Unified Phishing Attack Detection Model, URL = Uniform Resource Locator, F1 = F1-score.

The preprocessing pipeline consisted of several critical steps

to ensure data quality and consistency. Initially, duplicate

entries were identified and removed using hash-based

deduplication techniques. Subsequently, broken links and URLs

with missing components were filtered out through accessibility

validation. Character normalization was applied to standardize

the URL format, removing unnecessary whitespace and special

characters that could introduce noise in feature extraction. Each

URL was assigned a binary label, where 1 denotes phishing and

0 represents legitimate URLs. The preprocessed dataset

structure is depicted in Figure 2.

Study Approach Category Techniques / Models Used Dataset Size / Type Feature Scope

[9] Machine Learning URL-based ML 6,000 URLs Lexical

[7] Machine Learning Ensemble (HEFS, RF) DS-30, DS-50 URL + Feature engineering

[13] Machine Learning LR, SVM, RF, GB UCI dataset Feature-based

[20] Machine Learning Random Forest Mendeley dataset URL + Domain

[6] Machine Learning Ensemble ML Two datasets URL + DNS + HTML

[18] Machine Learning GBoost, RF, DT Feature-based (30 features) URL + Statistical

[19] Machine Learning LR, RF, SVM, Ensembles Mixed dataset Multi-feature

[21] Machine Learning SVM Custom dataset Feature-heavy

[14] Deep Learning CNN-LSTM, RF 11,430 URLs URL + Embeddings

[22] Deep Learning /

Hybrid

Word2Vec, GloVe, XGB, CNN, LSTM Mixed datasets Text embeddings

[23] Deep Learning KD-ELECTRA (Chrome extension) 450k URLs Transformer embeddings

[24] Hybrid ML–DL UPADM framework Large dataset Multi-modal

[25] Hybrid Machine

Learning

LR, SVC, DT, RF, GBM, KNN + proposed

LSD (LR+SVC+DT voting)

~11,000 phishing &

legitimate URLs (UCI-style)

URL-based + handcrafted

features

[26] Deep Learning

(Hybrid)

CNN + LSTM (IPDS) ~1M URLs + >10k webpage

images

URL + HTML text +

images + frames

[27] Deep Learning RF, J48, FilteredClassifier, 24 ML models Two datasets (11,055

instances; 1,353 instances)

Feature-based (30 & 9

engineered features)

[28] Deep Learning

(Survey)

CNN, LSTM, RNN, Attention-based DL Multiple datasets (review

paper)

Text, email structure,

embeddings

[29] Large Language

Model (LLM)

LLaMA (character-level URL modeling) >2 million URLs URL character sequences

(embedding-based)

Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 59

Fig. 2: Dataset after preprocessing

B. Feature Engineering

Feature extraction constitutes a crucial phase in transforming

raw URL strings into quantifiable attributes suitable for

machine learning algorithms. The feature engineering process

encompassed four distinct categories, each capturing different

behavioral characteristics of URLs.

• Lexical Features: This category extracts structural

properties including URL length, count of digits, number of

hyphens, presence of special characters, and token distribution.

These features effectively capture obfuscation techniques

commonly employed in phishing attacks.

• Character Ratio Features: Statistical measures such as

vowel-to-character ratio, consonant-to-character ratio, digit-to-

character ratio, and entropy-based randomness metrics were

computed. These ratios help identify randomly generated

domains and unusual character distributions characteristic of

malicious URLs.

• Domain and Security Features: Security-related attributes

including HTTPS protocol usage, top-level domain (TLD)

classification, presence of IP-based domains, and suspicious

domain patterns were extracted. These features leverage domain

registration and security certificate information to assess URL

legitimacy.

• Keyword and Brand Features: Semantic analysis was

performed to detect phishing-indicative keywords such as

"login," "verify," "update," and "secure." Additionally, brand

imitation detection and brand similarity scoring algorithms were

implemented to identify spoofing attempts targeting well-

known organizations.

C. Model Selection and Training

1) Algorithm Evaluation

Twelve machine learning algorithms were evaluated to

identify the optimal classifier for phishing detection. The

evaluated models included Logistic Regression, Decision Tree,

Random Forest, Gradient Boosting, Naive Bayes, K-Nearest

Neighbors (KNN), Support Vector Machine (SVM), and

XGBoost, among others. All models were trained and evaluated

under identical conditions to ensure fair comparison.

2) Data Partitioning

The dataset was partitioned using an 80-20 train-test split

ratio. This ratio was selected to allocate sufficient training

samples for model learning while retaining an adequate test set

for unbiased performance evaluation. The stratified splitting

technique ensured that both subsets maintained the original 50-

50 distribution of phishing and legitimate URLs.

3) Baseline Training Protocol

The training protocol involved loading the engineered feature

matrix (X) and corresponding label vector (y), followed by

systematic training of each model on the training subset.

Predictions were generated on the test subset, and

comprehensive performance metrics were computed including

Accuracy, Precision, Recall, F1-score, ROC-AUC, Log Loss,

and Matthews Correlation Coefficient (MCC). Algorithm-

specific parameters were configured as follows: maximum

iterations set to 1000 for Logistic Regression convergence,

probability estimation enabled for SVM to support probabilistic

predictions, and log loss specified as the evaluation metric for

XGBoost to suppress convergence warnings.

D. Hyperparameter Optimization

Following preliminary evaluation, XGBoost demonstrated

superior performance and was selected for extensive

hyperparameter tuning. The optimization process aimed to

enhance predictive performance and generalization capability

through systematic parameter space exploration.

1) Optimization Strategy

RandomizedSearchCV was employed for efficient

hyperparameter search, executing 100 iterations with 5-fold

cross-validation. The optimization process was conducted on

Google Colab infrastructure to leverage computational

resources. The dataset partitioning was modified to a 70-15-15

split for training, validation, and testing respectively, providing

stable results while maintaining statistical representativeness in

both validation and test sets.

2) Parameter Space

The hyperparameter search space encompassed the following

ranges:

• n_estimators: [200, 1500] - controlling ensemble size

• max_depth: [3, 12] - limiting tree complexity

• learning_rate: [0.001, 0.3] - adjusting gradient descent step

size

• subsample: [0.6, 1.0] - fraction of samples per tree

• colsample_bytree: [0.6, 1.0] - fraction of features per tree

• min_child_weight: [1, 10] - minimum sum of instance

weight in child

• gamma: [0.0001, 1.0] - minimum loss reduction for

splitting

• reg_alpha: [0.000001, 0.1] - L1 regularization term

• reg_lambda: [0.001, 1.0] - L2 regularization term

Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 60

Fig. 3: Hyperparameters vs mean_test_score (accuracy)

3) Optimal Configuration

The optimization process converged to the following optimal

hyperparameter configuration: n_estimators = 1479, max_depth

= 9, learning_rate = 0.0057, colsample_bytree = 0.99,

min_child_weight = 1, and gamma = 0.0002. This configuration

achieved a mean 5-fold cross-validation accuracy of 0.90199,

demonstrating consistent performance across all folds. The

relationship between hyperparameter combinations and test

accuracy is visualized in Figure 3.

4) Threshold Optimization

Classification threshold analysis was conducted across the

range [0.05, 0.95] to identify the optimal decision boundary.

Various performance metrics were evaluated at each threshold

point, as illustrated in Figure 4, enabling selection of a threshold

that balances precision and recall according to application

requirements.

Fig. 4: Metric vs Threshold chart

E. Feature Importance Analysis

XGBoost's intrinsic feature importance metrics provided

insights into feature contributions to the model's decision-

making process. Three important measures were analyzed:

• Weight-based Importance: Features such as

entropy_domain, brand_similarity, vowel_ratio, and

consonant_ratio exhibited the highest weights, indicating

frequent usage in tree construction (Figure 6).

• Cover-based Importance: The analysis revealed that

has_hyphen, num_hyphens, and contains_phishing_words

demonstrated maximum coverage values, suggesting their

significant role in sample classification.

• Gain-based Importance: Features has_hyphen and

num_hyphens achieved the highest gain scores, indicating their

substantial contribution to prediction accuracy improvements.

The convergence of these importance metrics confirms that

structural anomalies (hyphens), domain randomness (entropy),

and brand imitation attempts constitute the most discriminative

features for phishing detection.

F. Model Evaluation and Comparison

Comprehensive performance evaluation was conducted on all

twelve machine learning algorithms using identical feature sets

and data splits. Each model generated both categorical

predictions and probability estimates for the positive class

where applicable. The evaluation metrics encompassed

Accuracy, Precision, Recall, F1-score, ROC-AUC, and Log

Loss.

G. System Deployment and Integration

The deployment architecture comprises a Flask-based REST

API backend and a Google Chrome browser extension frontend,

enabling real-time phishing detection during web browsing.

Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 61

1) Backend API Development

The Flask framework was selected for API development due

to its lightweight architecture and rapid deployment capabilities.

The API loads the trained model upon initialization and exposes

an endpoint for URL feature evaluation. Upon receiving a

feature vector from the browser extension, the API performs

real-time inference and returns a classification result with

associated confidence scores.

2) Browser Extension Integration

The Chrome extension operates as a background service that

monitors navigation events. When a user initiates navigation to

a new URL, the extension extracts the predefined feature set

from the URL string and transmits it to the Flask API via an

asynchronous HTTP POST request. The extension processes

the API response and, in cases where the URL is classified as

phishing with high confidence, displays an immediate warning

alert to prevent page loading. This architecture ensures

continuous, transparent protection without requiring explicit

user interaction, effectively functioning as an autonomous

security layer during web browsing sessions.

3) Real-time Processing Pipeline

The complete processing pipeline operates within

milliseconds, ensuring minimal latency impact on browsing

experience. Feature extraction occurs client-side within the

extension, while model inference is performed server-side on

the Flask API. This distributed architecture balances

computational efficiency with model sophistication, enabling

deployment of complex machine learning models without

compromising browser performance.

Fig. 5: Model testing result table

IV.RESULTS AND DISCUSSION

This section presents the experimental results obtained from

evaluating twelve machine learning algorithms for phishing

URL detection, followed by an analysis of the deployed browser

extension's real-time performance. The comprehensive

evaluation encompasses classification accuracy, computational

efficiency, and practical deployment validation.

Fig. 6: XGBoost Importance (weight)

A. Model Performance Evaluation

Twelve classification algorithms were evaluated under

identical experimental conditions to ensure fair comparison.

The evaluated models include Random Forest, Logistic

Regression, Decision Tree, K-Nearest Neighbors (KNN),

XGBoost, Naive Bayes, Support Vector Machine (SVM),

Gradient Boosting, AdaBoost, Bagging Classifier, Ridge

Classifier, and Stochastic Gradient Descent (SGD) Classifier.

Each model was trained on the engineered feature set and

evaluated using standard classification metrics.

1) XGBoost: Selected Model

Based on comprehensive performance analysis, XGBoost was

selected as the optimal classifier for deployment. The model

achieved an accuracy of 90.85%, demonstrating robust

classification capability across both phishing and legitimate

URL classes. The precision score of 93.36% indicates high

reliability in positive predictions, minimizing false alarms that

could negatively impact user experience. The F1-score of 0.90

reflects balanced performance between precision and recall,

which is critical for phishing detection systems where both false

positives and false negatives carry significant consequences

While Random Forest exhibited competitive performance

with metrics closely approaching XGBoost, the latter

demonstrated superior balance between precision and recall

among the evaluated classifiers, making it more suitable for

real-time deployment scenarios. Although higher accuracy

values have been reported in the literature, many such

approaches employ computationally intensive models or offline

evaluation settings; in contrast, this work prioritizes low-

latency, lightweight deployment suitable for browser

extensions.

2) Comprehensive Performance Metrics

Table II presents the detailed performance metrics for the

selected XGBoost model across seven key evaluation criteria.

The model achieved an accuracy of approximately 90%,

indicating correct classification in nine out of ten URLs. The

precision of 93% demonstrates that when the system flags a

URL as phishing, it is correct 93% of the time, thereby

Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 62

maintaining user trust through minimal false warnings. The

recall value of 88% indicates that the system successfully

identifies 88% of actual phishing URLs, providing substantial

protection coverage.

The F1-score of 0.90 represents the harmonic mean of

precision and recall, confirming balanced performance across

both metrics. The ROC-AUC score of 0.96 demonstrates

excellent discrimination capability between classes, with the

model effectively separating phishing and legitimate URLs

across various threshold settings. The Log Loss value of 0.23

indicates well-calibrated probability estimates, essential for

threshold-based decision making. Finally, the Matthews

Correlation Coefficient (MCC) of 0.81 signifies strong

correlation between predictions and actual labels, accounting

for class imbalance and providing a robust performance

measure.

TABLE II

PERFORMANCE METRICS OF THE SELECTED

XGBOOST MODEL

Metric Value (≈)

Accuracy 90%

Precision 93%

Recall 88%

F1-Score 0.90

ROC-AUC 0.96

Log Loss 0.23

MCC 0.81

3) Real-time Performance Analysis

Real-time testing demonstrated that the integrated system

achieves URL classification within approximately 0.3 to 0.5

seconds from the moment of page load initiation. This latency

encompasses feature extraction within the browser extension,

network transmission to the Flask API backend, model

inference, and result transmission back to the extension.

Although domain registration and security-related attributes are

considered during feature design, the proposed system does not

perform live WHOIS or SSL/TLS queries during real-time

detection. All real-time decisions are made using URL-derived

features that can be extracted locally and processed

immediately. Network-bound operations such as WHOIS or

certificate retrieval are excluded from the inference path and

therefore do not contribute to runtime latency. The total

response time remains consistently under one second from

initial page load to on-screen warning display, meeting the

stringent performance requirements for practical deployment

without significantly degrading user browsing experience.

B. Browser Extension Deployment Results

The trained XGBoost model was successfully deployed

through a Flask-based REST API integrated with a Google

Chrome browser extension, enabling real-time phishing

detection during normal web browsing activities.

1) System Architecture and Workflow

The deployment architecture consists of two primary

components operating in tandem. The Chrome extension

functions as the client-side monitoring agent, intercepting

navigation events and extracting URL features using the

predefined feature engineering pipeline. Upon feature

extraction, the extension transmits the feature vector to the Flask

API backend via asynchronous HTTP POST request, ensuring

non-blocking operation that maintains browser responsiveness.

The Flask API backend loads the trained XGBoost model

upon initialization and maintains it in memory for rapid

inference. When receiving a feature vector, the API performs

classification inference and returns a structured JSON response

containing the prediction label (phishing or legitimate) along

with associated confidence scores. The extension processes this

response and triggers appropriate user interface actions based

on the classification result.

2) User Interface and Warning Mechanism

When a user navigates to a URL classified as phishing with

high confidence, the extension immediately displays a warning

message, as illustrated in Figure 7. The warning interface is

designed to be prominent yet non-intrusive, clearly

communicating the detected threat while providing options for

the user to proceed at their own discretion or navigate away to

safety. This approach balances security with user autonomy,

acknowledging that false positives may occasionally occur

while ensuring users are informed of potential risks.

Fig. 7: Phishing site detected by browser extension

The automatic detection and warning mechanism operates

transparently in the background, requiring no manual activation

or configuration from users. This zero-interaction security

model significantly enhances protection coverage, particularly

benefiting users who may lack the technical expertise to

manually identify phishing attempts.

Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 63

Fig. 8: Grouped line chart log scale

C. Deployment Validation

Field testing of the deployed extension across diverse

browsing scenarios confirmed consistent performance across

various URL types and website categories. The system

successfully identified known phishing URLs from test datasets

while maintaining low false positive rates on legitimate

websites. The sub-second response time ensures seamless

integration into normal browsing workflows, with users

experiencing negligible latency impact. The lightweight

architecture of both the extension and API ensures scalability,

with the system capable of handling multiple concurrent

requests without performance degradation.

D. Analysis and Interpretation

The experimental results demonstrate that machine learning-

based approaches, particularly ensemble methods like

XGBoost, provide effective solutions for real-time phishing

detection. The achieved performance metrics indicate practical

feasibility for real-time deployment, with accuracy and

precision levels sufficient for practical deployment while

maintaining acceptable recall rates. The successful integration

of the trained model with a browser extension validates the

feasibility of deploying sophisticated machine learning models

in resource-constrained environments, with the sub-second

response time confirming that complex feature extraction and

model inference can be performed efficiently without

compromising user experience.

The system's effectiveness can be attributed to the

comprehensive feature engineering approach that captures

lexical, statistical, domain-based, and semantic characteristics

of URLs. The combination of multiple feature categories

enables the model to identify phishing attempts through various

attack patterns, from domain obfuscation techniques to brand

impersonation strategies. However, the 88% recall rate indicates

that approximately 12% of phishing URLs may evade detection,

representing a limitation inherent to pattern-based classification

approaches. Additionally, the system's performance depends on

the representativeness of the training data, with novel phishing

strategies not represented in the training set potentially

challenging the model's generalization capability. Despite these

constraints, the achieved balance between detection accuracy

and computational efficiency demonstrates the viability of the

proposed approach for real-world deployment as a practical

phishing protection mechanism.

V.LIMITATIONS AND FUTURE WORK

While the proposed system demonstrates effective real-time

phishing detection with sub-second response times, several

limitations should be acknowledged. First, the dataset used in

this study represents a time-bounded snapshot collected from

publicly available phishing and legitimate URL repositories.

The evaluation employed random train–test splits, which enable

fair model comparison but do not explicitly assess temporal

generalization against newly emerging phishing URLs or

concept drift over time. Second, although domain and security-

related characteristics are considered at the feature design level,

the real-time detection pipeline relies primarily on URL-derived

lexical and structural features to maintain low latency. Live

network-dependent enrichment sources such as WHOIS or

SSL/TLS queries are excluded from the inference path, which

may limit access to certain contextual signals. Finally, the

current deployment architecture performs inference on a

backend server, requiring transmission of URL-level data.

Although data exposure is minimized and secured, this design

introduces inherent privacy considerations. Future work will

focus on evaluating temporal robustness using chronologically

ordered datasets, exploring periodic model retraining to address

evolving phishing strategies, and investigating privacy-

enhanced deployment alternatives, such as lightweight edge-

based inference within the browser extension.

VI.CONCLUSION

This research presented a real-time phishing URL detection

system utilizing machine learning integrated with a browser

extension. A dataset of 13,716 balanced URLs was collected

from trusted sources and processed through a comprehensive

feature engineering pipeline encompassing lexical, statistical,

domain-based, and semantic attributes. Systematic evaluation

of twelve classification algorithms identified XGBoost as the

optimal model, achieving 90.85% accuracy, 93.36% precision,

and an F1-score of 0.90. The system was successfully deployed

through a Flask API backend connected to a Google Chrome

Journal of Information and Communication Technology (JICT) Volume 03. Issue 02 January (2026)

Copyright ©2026 belongs to Department of Information and Communication Technology, Faculty of Technology,

South Eastern University of Sri Lanka, University Park, Oluvil, #32360, Sri Lanka

ISSN: 2961-5992 64

extension, enabling automatic phishing detection with sub-

second response times during normal browsing activities. Real-

time testing validated the system's capability to identify

malicious URLs and display warnings without manual user

intervention, demonstrating the feasibility of deploying

sophisticated machine learning models in resource-constrained

browser environments. While the dataset size and pattern-based

approach present limitations for novel phishing techniques, the

achieved balance between detection accuracy and

computational efficiency confirms the viability of browser-

based machine learning security solutions for practical

cybersecurity applications.

REFERENCES

[1] S. Abad and H. Gholamy, “Evaluation of machine learning models for

classifying malicious URLs,” 2023.

[2] A. Baiomy, M. Mostafa, and A. Youssif, “Anti-Phishing Game Framework

to Educate Arabic Users: Avoidance of URLs Phishing Attacks,” Indian J. Sci.

Technol., vol. 12, no. 44, pp. 01–10, 2019, doi:

10.17485/ijst/2019/v12i44/147850.

[3] J. A. Ochu, G. I. O. Aimufua, H. Musa, and S. E. Chaku, “Detecting

phishing websites using large language model,” Sci. World J., vol. 20, no. 2,

pp. 692–697, 2025, doi: 10.4314/swj.v20i2.33.

[4] K. Subashini and V. Narmatha, “Detecting Phishing Websites using recent

Techniques: A Systematic Literature Review,” ITM Web Conf., vol. 57, p.

01008, 2023, doi: 10.1051/itmconf/20235701008.

[5] M. Aljabri et al., “Detecting Malicious URLs Using Machine Learning

Techniques: Review and Research Directions,” IEEE Access, vol. 10, pp.

121395–121417, 2022, doi: 10.1109/ACCESS.2022.3222307.

[6] C. M. Igwilo and V. T. Odumuyiwa, “Comparative Analysis of Ensemble

Learning and Non-Ensemble Machine Learning Algorithms for Phishing URL

Detection,” FUOYE J. Eng. Technol., vol. 7, no. 3, pp. 305–312, 2022, doi:

10.46792/fuoyejet.v7i3.807.

[7] S. M. Wajid, T. Javed, and M. Mohd Su’ud, “Ensemble Learning-Powered

URL Phishing Detection: A Performance Driven Approach,” J. Informatics

Web Eng., vol. 3, no. 2, pp. 134–145, Jun. 2024, doi:

10.33093/jiwe.2024.3.2.10.

[8] S. M. Alshahrani, N. A. Khan, J. Almalki, and W. Al Shehri, “URL Phishing

Detection Using Particle Swarm Optimization and Data Mining,” Comput.

Mater. Contin., vol. 73, no. 3, pp. 5625–5640, 2022, doi:

10.32604/cmc.2022.030982.

[9] N. Koppula, V. P. Ganti, and P. Gandhe, “URL Based Phishing Detection,”

Int. J. Recent Technol. Eng., vol. 9, no. 1, pp. 1872–1875, May 2020, doi:

10.35940/ijrte.A2657.059120.

[10] G. Varshney, A. Raj, D. Sangwan, S. Abuadbba, R. Mishra, and Y. Gao,

“A login page transparency and visual similarity-based zero-day phishing

defense protocol,” Comput. Secur., vol. 158, no. 2007, 2025, doi:

10.1016/j.cose.2025.104598.

[11] P. Preeti and P. Sharma, “Evolving strategies in anti-phishing: an in-

depth analysis of detection techniques and future research directions,” Indones.

J. Electr. Eng. Comput. Sci., vol. 37, no. 3, p. 1726, 2025, doi:

10.11591/ijeecs.v37.i3.pp1726-1733.

[12] O. C. Angel, P. Melanie, P. Cristhian, R. Padilla-Vega, and C. José,

“Analyzing website characteristics and their impact on web traffic and

legitimacy classification for phishing detection: A structural equation modeling

approach,” Issues Inf. Syst., vol. 26, no. 2, pp. 150–161, 2025, doi:

10.48009/2_iis_112.

[13] K. Omari, “Comparative Study of Machine Learning Algorithms for

Phishing Website Detection,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 9, pp.

417–425, 2023, doi: 10.14569/IJACSA.2023.0140945.

[14] sopnil nepal, hemant gurung, and roshan nepal, “Phishing URL

Detection Using CNN-LSTM and Random Forest Classifier,” Nov. 01, 2022.

doi: 10.21203/rs.3.rs-2043842/v2.

[15] H. R. Alavala, S. Singh, P. Joshi, and S. Basavaraju, “Enhancing

Malicious URL Detection with Advanced Machine Learning Techniques,” 1st

Int. Conf. Adv. Comput. Sci. Electr. Electron. Commun. Technol. CE2CT 2025,

vol. 11, no. 8, pp. 151–156, 2025, doi: 10.1109/CE2CT64011.2025.10939290.

[16] A. Bharambe, “A Neural Network-Based Detection of Phishing URLs

using Embeddings,” SSRN Electron. J., 2025, doi: 10.2139/ssrn.5380655.

[17] Y. S Tambe, “Phishing URL Detection Using Machine Learning,” J.

Adv. Res. Prod. Ind. Eng., vol. 10, no. 01, pp. 1–5, Sep. 2023, doi:

10.24321/2456.429X.202301.

[18] S. H. Nallamala, K. Namitha, K. Raviteja, K. S. Sumanth, and J. S. Kota,

“Phishing URL Detection using Machine Learning,” Int. J. Res. Appl. Sci. Eng.

Technol., vol. 12, no. 3, pp. 1984–1995, Mar. 2024, doi:

10.22214/ijraset.2024.59261.

[19] B. K. Gontla, P. Gundu, P. J. Uppalapati, K. Narasimharao, and S. M.

Hussain, “A Machine Learning Approach to Identify Phishing Websites: A

Comparative Study of Classification Models and Ensemble Learning

Techniques,” EAI Endorsed Trans. Scalable Inf. Syst., vol. 10, no. 5, pp. 1–9,

2023, doi: 10.4108/eetsis.vi.3300.

[20] A. Al-qasmi, A. Al-anazi, L. Al-shehri, S. A-lshaman, and W. Al-atawi,

“INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING

Machine Learning-Based Phishing Detection System,” vol. 12, no. 4, pp. 4367–

4372, 2024.

[21] P. Janarthanan, K. Pratiba, S. SriS, and B. Yashashwini, “EFFECTIVE

DETECTION OF MALICIOUS URLS USING VARIOUS MACHINE

LEARNING TECHNIQUES,” 2022. [Online]. Available: www.irjmets.com

[22] S. V. Oprea and A. Bâra, “Detecting Malicious Uniform Resource

Locators Using an Applied Intelligence Framework,” Comput. Mater. Contin.,

vol. 79, no. 3, pp. 3827–3853, 2024, doi: 10.32604/cmc.2024.051598.

[23] K. S. Jishnu and B. Arthi, “Real-time phishing URL detection framework

using knowledge distilled ELECTRA,” Automatika, vol. 65, no. 4, pp. 1621–

1639, 2024, doi: 10.1080/00051144.2024.2415797.

[24] S. Iftikhar, O. A. Abdulkader, and B. A. A. R. Al-Ghamdi, “UPADM -

A Novel URL Phishing Attack Detection Model based on Machine Learning

and Deep Learning Algorithms,” Int. J. Cyber Criminol., vol. 18, no. 1, pp.

244–260, 2024, doi: 10.5281/zenodo.4766814.

[25] A. Karim, M. Shahroz, K. Mustofa, S. B. Belhaouari, and S. R. K. Joga,

“Phishing Detection System Through Hybrid Machine Learning Based on

URL,” IEEE Access, vol. 11, pp. 36805–36822, 2023, doi:

10.1109/ACCESS.2023.3252366.

[26] M. A. Adebowale, K. T. Lwin, and M. A. Hossain, “Intelligent phishing

detection scheme using deep learning algorithms,” J. Enterp. Inf. Manag., vol.

36, no. 3, pp. 747–766, 2023, doi: 10.1108/JEIM-01-2020-0036.

[27] R. Alazaidah et al., “Website Phishing Detection Using Machine

Learning Techniques,” J. Stat. Appl. Probab., vol. 13, no. 1, pp. 119–129, 2024,

doi: 10.18576/jsap/130108.

[28] K. Thakur, M. L. Ali, M. A. Obaidat, and A. Kamruzzaman, “A

Systematic Review on Deep-Learning-Based Phishing Email Detection,”

Electron., vol. 12, no. 21, pp. 1–26, 2023, doi: 10.3390/electronics12214545.

[29] O. K. Sahingoz, E. Buber, and E. Kugu, “DEPHIDES: Deep Learning

Based Phishing Detection System,” IEEE Access, vol. 12, no. January, pp.

8052–8070, 2024, doi: 10.1109/ACCESS.2024.3352629.

